Documentation Verification Report

Star

πŸ“ Source: Mathlib/Topology/Algebra/Module/Star.lean

Statistics

MetricCount
DefinitionsdecomposeProdAdjointL, selfAdjointPartL, skewAdjointPartL, starL, starL', Β«term_β†’L⋆[_]_Β», Β«term_≃L⋆[_]_Β»
7
TheoremsdecomposeProdAdjointL_apply, decomposeProdAdjointL_symm_apply, continuous_decomposeProdAdjoint, continuous_decomposeProdAdjoint_symm, continuous_selfAdjointPart, continuous_skewAdjointPart, selfAdjointPartL_apply_coe, skewAdjointPartL_apply_coe, starL'_apply, starL'_symm_apply, starL_apply, starL_symm_apply
12
Total19

StarModule

Definitions

NameCategoryTheorems
decomposeProdAdjointL πŸ“–CompOp
2 mathmath: decomposeProdAdjointL_symm_apply, decomposeProdAdjointL_apply

Theorems

NameKindAssumesProvesValidatesDepends On
decomposeProdAdjointL_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
skewAdjoint
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Prod.instAddCommMonoid
AddSubgroup.toAddCommGroup
Prod.instModule
selfAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
skewAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
decomposeProdAdjointL
LinearMap
LinearMap.instFunLike
selfAdjointPart
skewAdjointPart
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
decomposeProdAdjointL_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
skewAdjoint
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
AddSubgroup.toAddCommGroup
Prod.instModule
selfAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
skewAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
decomposeProdAdjointL
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap
LinearMap.instFunLike
Submodule.subtype
selfAdjoint.submodule
skewAdjoint.submodule
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids

(root)

Definitions

NameCategoryTheorems
selfAdjointPartL πŸ“–CompOp
1 mathmath: selfAdjointPartL_apply_coe
skewAdjointPartL πŸ“–CompOp
1 mathmath: skewAdjointPartL_apply_coe
starL πŸ“–CompOp
4 mathmath: starL_apply, starL_symm_apply, starβ‚—α΅’_toContinuousLinearEquiv, HasFDerivAt.star_star
starL' πŸ“–CompOp
8 mathmath: HasStrictFDerivAt.star, HasFDerivAt.star, fderivWithin_star, HasFDerivWithinAt.star, starL'_apply, HasFDerivAtFilter.star, starL'_symm_apply, fderiv_star
Β«term_β†’L⋆[_]_Β» πŸ“–CompOpβ€”
Β«term_≃L⋆[_]_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_decomposeProdAdjoint πŸ“–mathematicalβ€”Continuous
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
skewAdjoint
instTopologicalSpaceProd
instTopologicalSpaceSubtype
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Prod.instAddCommMonoid
AddSubgroup.toAddCommGroup
Prod.instModule
selfAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
skewAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
StarModule.decomposeProdAdjoint
β€”Nat.instAtLeastTwoHAddOfNat
Continuous.prodMk
continuous_selfAdjointPart
IsTopologicalAddGroup.toContinuousAdd
continuous_skewAdjointPart
IsTopologicalAddGroup.to_continuousSub
continuous_decomposeProdAdjoint_symm πŸ“–mathematicalβ€”Continuous
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
skewAdjoint
instTopologicalSpaceProd
instTopologicalSpaceSubtype
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
AddSubgroup.toAddCommGroup
Prod.instModule
selfAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
skewAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
StarModule.decomposeProdAdjoint
β€”Nat.instAtLeastTwoHAddOfNat
Continuous.add
Continuous.comp
continuous_subtype_val
continuous_fst
continuous_snd
continuous_selfAdjointPart πŸ“–mathematicalβ€”Continuous
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
instTopologicalSpaceSubtype
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
AddSubgroup.toAddCommGroup
selfAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.instFunLike
selfAdjointPart
β€”Nat.instAtLeastTwoHAddOfNat
Continuous.comp
ContinuousConstSMul.continuous_const_smul
Continuous.add
continuous_id
ContinuousStar.continuous_star
continuous_skewAdjointPart πŸ“–mathematicalβ€”Continuous
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
instTopologicalSpaceSubtype
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
AddSubgroup.toAddCommGroup
skewAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.instFunLike
skewAdjointPart
β€”Nat.instAtLeastTwoHAddOfNat
Continuous.comp
ContinuousConstSMul.continuous_const_smul
Continuous.sub
continuous_id
ContinuousStar.continuous_star
selfAdjointPartL_apply_coe πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceSubtype
AddSubgroup.toAddCommGroup
selfAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
ContinuousLinearMap.funLike
selfAdjointPartL
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Invertible.invOf
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Star.star
StarAddMonoid.toInvolutiveStar
β€”Nat.instAtLeastTwoHAddOfNat
smul_add
skewAdjointPartL_apply_coe πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceSubtype
AddSubgroup.toAddCommGroup
skewAdjoint.instModuleSubtypeMemAddSubgroupOfStarModule
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
ContinuousLinearMap.funLike
skewAdjointPartL
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Invertible.invOf
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
SubNegMonoid.toSub
Star.star
StarAddMonoid.toInvolutiveStar
β€”Nat.instAtLeastTwoHAddOfNat
starL'_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
starL'
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
β€”RingHomInvPair.ids
starL'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
starL'
AddEquiv
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
AddEquiv.instEquivLike
AddEquiv.symm
starAddEquiv
LinearEquiv
starRingEnd
RingHomInvPair.instStarRingEnd
LinearEquiv.instEquivLike
LinearEquiv.symm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”RingHomInvPair.ids
starL_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
CommSemiring.toSemiring
starRingEnd
RingHomInvPair.instStarRingEnd
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
starL
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
β€”RingHomInvPair.instStarRingEnd
starL_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
CommSemiring.toSemiring
starRingEnd
RingHomInvPair.instStarRingEnd
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
starL
AddEquiv
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
AddEquiv.instEquivLike
AddEquiv.symm
starAddEquiv
β€”RingHomInvPair.instStarRingEnd

---

← Back to Index