Documentation Verification Report

MulAction

πŸ“ Source: Mathlib/Topology/Algebra/MulAction.lean

Statistics

MetricCount
DefinitionsContinuousSMul, ContinuousVAdd, MulAction
3
TheoremscontinuousVAdd_compHom, continuousVAdd, continuousVAdd, continuousVAdd, connectedSpace, continuousVAdd, smul, vadd, smul, vadd, smul, vadd, continuousConstSMul, continuous_smul, induced, op, continuousConstVAdd, continuous_vadd, op, smul, vadd, smul, smul_const, vadd, vadd_const, top_smul_nhds_zero, smul, vadd, smul_set, vadd_set, continuousSMul, continuousSMul_compHom, continuousSMul, continuousSMul, continuousVAdd, continuousSMul, univ_smul_nhds_zero, smul, vadd, continuousSMul, continuousSMul, continuousSMul, continuousVAdd, continuousSMul, continuousVAdd, continuousSMul_iInf, continuousSMul_iff_stabilizer_isOpen, continuousSMul_inf, continuousSMul_sInf, continuousVAdd_iInf, continuousVAdd_inf, continuousVAdd_sInf, instContinuousSMulForall, instContinuousSMulULift, instContinuousVAddForall, instContinuousVAddULift, smul_set_closure_subset, stabilizer_isOpen, vadd_set_closure_subset
59
Total62

AddAction

Theorems

NameKindAssumesProvesValidatesDepends On
continuousVAdd_compHom πŸ“–mathematicalContinuous
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
ContinuousVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
toAddSemigroupAction
compHom
β€”Continuous.vadd
Continuous.comp
continuous_fst
continuous_snd

AddOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
continuousVAdd πŸ“–mathematicalβ€”ContinuousVAdd
AddOpposite
instVAdd
instTopologicalSpaceAddOpposite
β€”Continuous.comp
continuous_op
ContinuousVAdd.continuous_vadd
Continuous.prodMap
continuous_id
continuous_unop

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
continuousVAdd πŸ“–mathematicalβ€”ContinuousVAdd
AddSubgroup
SetLike.instMembership
instSetLike
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
toAddGroup
AddAction.toAddSemigroupAction
AddAction.instAddAction
instTopologicalSpaceSubtype
β€”AddSubmonoid.continuousVAdd

AddSubmonoid

Theorems

NameKindAssumesProvesValidatesDepends On
continuousVAdd πŸ“–mathematicalβ€”ContinuousVAdd
AddSubmonoid
AddMonoid.toAddZeroClass
SetLike.instMembership
instSetLike
vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
instTopologicalSpaceSubtype
β€”Topology.IsInducing.continuousVAdd
Topology.IsInducing.id
continuous_subtype_val

AddTorsor

Theorems

NameKindAssumesProvesValidatesDepends On
connectedSpace πŸ“–mathematicalβ€”ConnectedSpaceβ€”nonempty
Set.image_univ
Equiv.range_eq_univ
IsPreconnected.image
PreconnectedSpace.isPreconnected_univ
Continuous.continuousOn
Continuous.vadd
continuous_id
continuous_const

AddUnits

Theorems

NameKindAssumesProvesValidatesDepends On
continuousVAdd πŸ“–mathematicalβ€”ContinuousVAdd
AddUnits
instVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
instTopologicalSpaceAddUnits
β€”Topology.IsInducing.continuousVAdd
Topology.IsInducing.id
continuous_val

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–β€”Continuousβ€”β€”comp
ContinuousSMul.continuous_smul
prodMk
vadd πŸ“–mathematicalContinuousHVAdd.hVAdd
instHVAdd
β€”comp
ContinuousVAdd.continuous_vadd
prodMk

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–β€”ContinuousAtβ€”β€”Filter.Tendsto.smul
vadd πŸ“–mathematicalContinuousAtHVAdd.hVAdd
instHVAdd
β€”Filter.Tendsto.vadd

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–β€”ContinuousOnβ€”β€”ContinuousWithinAt.smul
vadd πŸ“–mathematicalContinuousOnHVAdd.hVAdd
instHVAdd
β€”ContinuousWithinAt.vadd

ContinuousSMul

Theorems

NameKindAssumesProvesValidatesDepends On
continuousConstSMul πŸ“–mathematicalβ€”ContinuousConstSMulβ€”Continuous.comp
continuous_smul
Continuous.prodMk
continuous_const
continuous_id
continuous_smul πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceProd
β€”β€”
induced πŸ“–mathematicalβ€”ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
TopologicalSpace.induced
DFunLike.coe
β€”continuous_induced_rng
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Continuous.comp'
continuous_smul
Continuous.prodMk
Continuous.fst
continuous_id'
continuous_induced_dom
Continuous.snd
op πŸ“–mathematicalβ€”ContinuousSMul
MulOpposite
MulOpposite.instTopologicalSpaceMulOpposite
β€”IsCentralScalar.op_smul_eq_smul
continuous_smul
Continuous.comp
Continuous.prodMap
MulOpposite.continuous_unop
continuous_id

ContinuousVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
continuousConstVAdd πŸ“–mathematicalβ€”ContinuousConstVAddβ€”Continuous.comp
continuous_vadd
Continuous.prodMk
continuous_const
continuous_id
continuous_vadd πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceProd
HVAdd.hVAdd
instHVAdd
β€”β€”
op πŸ“–mathematicalβ€”ContinuousVAdd
AddOpposite
AddOpposite.instTopologicalSpaceAddOpposite
β€”IsCentralVAdd.op_vadd_eq_vadd
continuous_vadd
Continuous.comp
Continuous.prodMap
AddOpposite.continuous_unop
continuous_id

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–β€”ContinuousWithinAtβ€”β€”Filter.Tendsto.smul
vadd πŸ“–mathematicalContinuousWithinAtHVAdd.hVAdd
instHVAdd
β€”Filter.Tendsto.vadd

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
top_smul_nhds_zero πŸ“–mathematicalβ€”Filter
instSMul
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
MulActionWithZero.toSMulWithZero
Top.top
instTop
nhds
β€”HasBasis.eq_top_iff
HasBasis.smul
hasBasis_top
basis_sets
Set.univ_smul_nhds_zero

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–β€”Filter.Tendsto
nhds
β€”β€”comp
Continuous.tendsto
ContinuousSMul.continuous_smul
prodMk_nhds
smul_const πŸ“–β€”Filter.Tendsto
nhds
β€”β€”smul
tendsto_const_nhds
vadd πŸ“–mathematicalFilter.Tendsto
nhds
HVAdd.hVAdd
instHVAdd
β€”comp
Continuous.tendsto
ContinuousVAdd.continuous_vadd
prodMk_nhds
vadd_const πŸ“–mathematicalFilter.Tendsto
nhds
HVAdd.hVAdd
instHVAdd
β€”vadd
tendsto_const_nhds

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–β€”Inseparableβ€”β€”map
prod
ContinuousSMul.continuous_smul
vadd πŸ“–mathematicalInseparableHVAdd.hVAdd
instHVAdd
β€”map
prod
ContinuousVAdd.continuous_vadd

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
smul_set πŸ“–mathematicalIsCompactSet
Set.smul
β€”Set.image_smul_prod
image
prod
ContinuousSMul.continuous_smul
vadd_set πŸ“–mathematicalIsCompactHVAdd.hVAdd
Set
instHVAdd
Set.vadd
β€”Set.vadd_image_prod
image
prod
ContinuousVAdd.continuous_vadd

IsScalarTower

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalβ€”ContinuousSMulβ€”Continuous.comp'
ContinuousSMul.continuous_smul
Continuous.prodMk
Continuous.fst
continuous_id'
continuous_const
Continuous.snd
smul_assoc
one_smul

MulAction

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul_compHom πŸ“–mathematicalContinuous
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
ContinuousSMul
SemigroupAction.toSMul
Monoid.toSemigroup
toSemigroupAction
compHom
β€”Continuous.smul
Continuous.comp
continuous_fst
continuous_snd

MulOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalβ€”ContinuousSMul
MulOpposite
instSMul
instTopologicalSpaceMulOpposite
β€”Continuous.comp
continuous_op
ContinuousSMul.continuous_smul
Continuous.prodMap
continuous_id
continuous_unop

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalβ€”ContinuousSMul
instSMul
instTopologicalSpaceProd
β€”Continuous.prodMk
Continuous.smul
continuous_fst
Continuous.comp
continuous_snd
continuousVAdd πŸ“–mathematicalβ€”ContinuousVAdd
instVAdd
instTopologicalSpaceProd
β€”Continuous.prodMk
Continuous.vadd
continuous_fst
Continuous.comp
continuous_snd

SMulMemClass

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalβ€”ContinuousSMul
SetLike.instMembership
SetLike.smul
instTopologicalSpaceSubtype
β€”Topology.IsInducing.continuousSMul
Topology.IsInducing.subtypeVal
continuous_id

Set

Theorems

NameKindAssumesProvesValidatesDepends On
univ_smul_nhds_zero πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
smul
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
MulActionWithZero.toSMulWithZero
univ
β€”eq_univ_of_forall
Filter.Tendsto.smul
Filter.tendsto_id
tendsto_const_nhds
zero_smul
Filter.nonempty_of_mem
inter_mem_nhdsWithin
Filter.mem_map
inv_smul_smulβ‚€

Specializes

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–β€”Specializesβ€”β€”map
prod
ContinuousSMul.continuous_smul
vadd πŸ“–mathematicalSpecializesHVAdd.hVAdd
instHVAdd
β€”map
prod
ContinuousVAdd.continuous_vadd

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalβ€”ContinuousSMul
Subgroup
SetLike.instMembership
instSetLike
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
MulAction.toSemigroupAction
MulAction.instMulAction
instTopologicalSpaceSubtype
β€”Submonoid.continuousSMul

Submonoid

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalβ€”ContinuousSMul
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
instSetLike
smul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
instTopologicalSpaceSubtype
β€”Topology.IsInducing.continuousSMul
Topology.IsInducing.id
continuous_subtype_val

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalTopology.IsInducing
Continuous
ContinuousSMulβ€”continuous_iff
Continuous.smul
Continuous.comp
continuous_fst
continuous
continuous_snd
continuousVAdd πŸ“–mathematicalTopology.IsInducing
Continuous
HVAdd.hVAdd
instHVAdd
ContinuousVAddβ€”continuous_iff
Continuous.vadd
Continuous.comp
continuous_fst
continuous
continuous_snd

Units

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalβ€”ContinuousSMul
Units
instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
instTopologicalSpaceUnits
β€”Topology.IsInducing.continuousSMul
Topology.IsInducing.id
continuous_val

VAddMemClass

Theorems

NameKindAssumesProvesValidatesDepends On
continuousVAdd πŸ“–mathematicalβ€”ContinuousVAdd
SetLike.instMembership
SetLike.vadd
instTopologicalSpaceSubtype
β€”Topology.IsInducing.continuousVAdd
Topology.IsInducing.subtypeVal
continuous_id

(root)

Definitions

NameCategoryTheorems
ContinuousSMul πŸ“–CompData
80 mathmath: continuousSMul_sphere_ball, IsModuleTopology.toContinuousSMul, continuousSMul_sphere_sphere, ContinuousLinearMap.continuousSMul, continuousSMul_of_algebraMap, AddGroup.continuousSMul_int, SchwartzMap.instContinuousSMul, WithSeminorms.continuousSMul, TopModuleCat.continuousSMul, UniformOnFun.continuousSMul_induced_of_image_bounded, ContinuousAlternatingMap.instContinuousSMul, Topology.IsInducing.continuousSMul, DiscreteTopology.instContinuousSMul, MvPowerSeries.WithPiTopology.instContinuousSMul, IntermediateField.continuousSMul, CStarMatrix.instContinuousSMul, AddMonoid.continuousSMul_nat, ProperSMul.toContinuousSMul, ModuleTopology.continuousSMul, UniformConvergenceCLM.continuousSMul, IsBoundedSMul.continuousSMul, continuousSMul_closedBall_ball, IntermediateField.botContinuousSMul, continuousSMul_sphere_closedBall, UniformFun.continuousSMul_induced_of_range_bounded, MeasureTheory.FiniteMeasure.instContinuousSMulNNReal, NNRat.instContinuousSMulOfIsScalarTowerOfRat, Circle.instContinuousSMul, WeakBilin.instContinuousSMul, CategoryTheory.PreGaloisCategory.continuousSMul_aut_fiber, Subfield.continuousSMul, ContinuousSMul.op, properSMul_iff_continuousSMul_ultrafilter_tendsto_t2, ContinuousLinearMapWOT.instContinuousSMul, instContinuousSMulULift, UnitAddTorus.instContinuousSMulComplexSubtypeAEEqFunVolumeMemAddSubgroupLp, continuousSMul_induced, ContinuousMap.instContinuousSMul, continuousSMul_inf, Subgroup.continuousSMul, QuotientGroup.instContinuousSMul, WithCStarModule.instContinuousSMul, Prod.continuousSMul, CategoryTheory.PreGaloisCategory.IsFundamentalGroup.continuous_smul, NNReal.instContinuousSMulOfReal, Subring.continuousSMul, SMulMemClass.continuousSMul, TrivSqZeroExt.instContinuousSMul, instContinuousSMulSubtypeLeOfNat, WeakDual.instContinuousSMul, Submonoid.continuousSMul, WeakSpace.instContinuousSMul, ContinuousMultilinearMap.instContinuousSMul, MulOpposite.continuousSMul, NNRat.instContinuousSMulNNReal, continuousSMul_inducedβ‚›β‚—, ContDiffMapSupportedIn.continuousSMul, continuousSMul_iff_stabilizer_isOpen, continuousSMul_closedBall_closedBall, properSMul_iff_continuousSMul_ultrafilter_tendsto, ContinuousSMul.of_basis_zero, MulAction.continuousSMul_compHom, Submodule.continuousSMul_quotient, CompactConvergenceCLM.continuousSMul, IsScalarTower.continuousSMul, Subalgebra.continuousSMul, TestFunction.instContinuousSMulReal, Subsemiring.continuousSMul, UniformOnFun.continuousSMul_submodule_of_image_bounded, Units.continuousSMul, ContinuousMul.to_continuousSMul, SeparationQuotient.instContinuousSMul, instContinuousSMulMatrix, CategoryTheory.PreGaloisCategory.instContinuousSMulAutFintypeCatObjCarrier, NNRat.instContinuousSMulRatReal, ModuleFilterBasis.continuousSMul, MeasureTheory.Lp.instContinuousSMulDomMulAct, ContinuousMul.to_continuousSMul_op, ContinuousSMul.induced, ContinuousSMul.of_nhds_zero
ContinuousVAdd πŸ“–CompData
19 mathmath: AddSubmonoid.continuousVAdd, ContinuousMap.instContinuousVAdd, Topology.IsInducing.continuousVAdd, AddAction.continuousVAdd_compHom, QuotientAddGroup.instContinuousVAdd, AddOpposite.continuousVAdd, instContinuousVAddULift, VAddMemClass.continuousVAdd, IsTopologicalAddTorsor.toContinuousVAdd, AddSubgroup.continuousVAdd, ProperVAdd.toContinuousVAdd, MeasureTheory.Lp.instContinuousVAddDomAddAct, AddUnits.continuousVAdd, properVAdd_iff_continuousVAdd_ultrafilter_tendsto, ContinuousAdd.to_continuousVAdd_op, ContinuousVAdd.op, continuousVAdd_inf, Prod.continuousVAdd, ContinuousAdd.to_continuousVAdd
MulAction πŸ“–CompData
2 mathmath: SubMulAction.ofFixingSubgroup_of_eq_apply, SubMulAction.ofFixingSubgroup_of_eq_bijective

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul_iInf πŸ“–mathematicalContinuousSMuliInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuousSMul_sInf
Set.forall_mem_range
continuousSMul_iff_stabilizer_isOpen πŸ“–mathematicalβ€”ContinuousSMul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
IsOpen
SetLike.coe
Subgroup
Subgroup.instSetLike
MulAction.stabilizer
β€”stabilizer_isOpen
continuous_prod_of_discrete_right
continuous_discrete_rng
Set.nonempty_iff_empty_ne
Set.ext
eq_inv_smul_iff
IsOpen.preimage
Continuous.fun_mul
IsTopologicalGroup.toContinuousMul
continuous_id'
continuous_const
continuousSMul_inf πŸ“–mathematicalβ€”ContinuousSMul
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”inf_eq_iInf
continuousSMul_iInf
continuousSMul_sInf πŸ“–mathematicalContinuousSMulInfSet.sInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”sInf_singleton
continuous_sInf_rng
continuous_sInf_domβ‚‚
ContinuousSMul.continuous_smul
continuousVAdd_iInf πŸ“–mathematicalContinuousVAddiInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuousVAdd_sInf
Set.forall_mem_range
continuousVAdd_inf πŸ“–mathematicalβ€”ContinuousVAdd
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”inf_eq_iInf
continuousVAdd_iInf
continuousVAdd_sInf πŸ“–mathematicalContinuousVAddInfSet.sInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”sInf_singleton
continuous_sInf_rng
continuous_sInf_domβ‚‚
ContinuousVAdd.continuous_vadd
instContinuousSMulForall πŸ“–mathematicalContinuousSMulPi.instSMul
Pi.topologicalSpace
β€”continuous_pi
Continuous.comp
Continuous.smul
continuous_fst
continuous_snd
Continuous.prodMk
continuous_apply
instContinuousSMulULift πŸ“–mathematicalβ€”ContinuousSMul
ULift.smulLeft
ULift.topologicalSpace
β€”Continuous.compβ‚‚
ContinuousSMul.continuous_smul
Continuous.comp
continuous_uliftDown
continuous_fst
continuous_snd
instContinuousVAddForall πŸ“–mathematicalContinuousVAddPi.instVAdd
Pi.topologicalSpace
β€”continuous_pi
Continuous.comp
Continuous.vadd
continuous_fst
continuous_snd
Continuous.prodMk
continuous_apply
instContinuousVAddULift πŸ“–mathematicalβ€”ContinuousVAdd
ULift.vaddLeft
ULift.topologicalSpace
β€”Continuous.compβ‚‚
ContinuousVAdd.continuous_vadd
Continuous.comp
continuous_uliftDown
continuous_fst
continuous_snd
smul_set_closure_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.smul
closure
β€”Set.smul_subset_iff
map_mem_closureβ‚‚
ContinuousSMul.continuous_smul
Set.smul_mem_smul
stabilizer_isOpen πŸ“–mathematicalβ€”IsOpen
SetLike.coe
Subgroup
Subgroup.instSetLike
MulAction.stabilizer
β€”IsOpen.preimage
Continuous.smul
continuous_id'
continuous_const
isOpen_discrete
vadd_set_closure_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vadd
closure
β€”Set.vadd_subset_iff
map_mem_closureβ‚‚
ContinuousVAdd.continuous_vadd
Set.vadd_mem_vadd

---

← Back to Index