Documentation Verification Report

AdicTopology

📁 Source: Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean

Statistics

MetricCount
DefinitionsadicModuleTopology, adicTopology, openAddSubgroup, ringFilterBasis, IsAdic, WithIdeal, i, instTopologicalSpace, instUniformSpace, topologicalSpaceModule
10
Theoremsadic_basis, adic_module_basis, hasBasis_nhds_adic, hasBasis_nhds_zero_adic, nonarchimedean, hasBasis_nhds, hasBasis_nhds_zero, instIsUniformAddGroup, instNonarchimedeanRing, isAdic_iff, is_bot_adic_iff, is_ideal_adic_pow
12
Total22

Ideal

Definitions

NameCategoryTheorems
adicModuleTopology 📖CompOp
adicTopology 📖CompOp
3 mathmath: nonarchimedean, hasBasis_nhds_zero_adic, hasBasis_nhds_adic
openAddSubgroup 📖CompOp
ringFilterBasis 📖CompOp
1 mathmath: adic_module_basis

Theorems

NameKindAssumesProvesValidatesDepends On
adic_basis 📖mathematicalSubmodulesRingBasis
Algebra.id
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
Submodule.instSMul
Semiring.toModule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsScalarTower.right
Submodule.instPowNat
Top.top
Submodule.instTop
IsScalarTower.right
pow_le_pow_right
le_max_left
le_max_right
mul_top
instIsTwoSided_1
Algebra.to_smulCommClass
Submodule.smul_mem
IsScalarTower.to_smulCommClass'
IsScalarTower.left
smul_top_eq_map
Submodule.restrictScalars.congr_simp
map_id
adic_module_basis 📖mathematicalRingFilterBasis.SubmodulesBasis
ringFilterBasis
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
IsScalarTower.left
IsScalarTower.right
le_inf_iff
Submodule.smul_mono_left
pow_le_pow_right
le_max_left
le_max_right
mul_top
instIsTwoSided_1
Submodule.smul_mem_smul
Submodule.mem_top
hasBasis_nhds_adic 📖mathematicalFilter.HasBasis
nhds
adicTopology
Set.image
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
IsScalarTower.right
Filter.HasBasis.map
hasBasis_nhds_zero_adic
map_add_left_nhds_zero
AddGroupFilterBasis.isTopologicalAddGroup
SubmodulesRingBasis.toRing_subgroups_basis
adic_basis
hasBasis_nhds_zero_adic 📖mathematicalFilter.HasBasis
nhds
adicTopology
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
IsScalarTower.right
Filter.HasBasis.mem_iff
AddGroupFilterBasis.nhds_zero_hasBasis
mul_top
instIsTwoSided_1
nonarchimedean 📖mathematicalNonarchimedeanRing
CommRing.toRing
adicTopology
RingSubgroupsBasis.nonarchimedean
IsScalarTower.right
SubmodulesRingBasis.toRing_subgroups_basis
adic_basis

IsAdic

Theorems

NameKindAssumesProvesValidatesDepends On
hasBasis_nhds 📖mathematicalIsAdicFilter.HasBasis
nhds
Set.image
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Ideal.hasBasis_nhds_adic
hasBasis_nhds_zero 📖mathematicalIsAdicFilter.HasBasis
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Ideal.hasBasis_nhds_zero_adic

WithIdeal

Definitions

NameCategoryTheorems
i 📖CompOp
instTopologicalSpace 📖CompOp
1 mathmath: instNonarchimedeanRing
instUniformSpace 📖CompOp
1 mathmath: instIsUniformAddGroup
topologicalSpaceModule 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsUniformAddGroup 📖mathematicalIsUniformAddGroup
instUniformSpace
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
isUniformAddGroup_of_addCommGroup
instNonarchimedeanRing 📖mathematicalNonarchimedeanRing
CommRing.toRing
instTopologicalSpace
RingSubgroupsBasis.nonarchimedean
SubmodulesRingBasis.toRing_subgroups_basis
Ideal.adic_basis

(root)

Definitions

NameCategoryTheorems
IsAdic 📖MathDef
2 mathmath: is_bot_adic_iff, isAdic_iff
WithIdeal 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
isAdic_iff 📖mathematicalIsAdic
IsOpen
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Set
Set.instHasSubset
IsScalarTower.right
OpenAddSubgroup.isOpen'
Filter.HasBasis.mem_iff
Ideal.hasBasis_nhds_zero_adic
IsTopologicalAddGroup.ext
IsTopologicalRing.to_topologicalAddGroup
AddGroupFilterBasis.isTopologicalAddGroup
SubmodulesRingBasis.toRing_subgroups_basis
Ideal.adic_basis
Filter.ext
mem_nhds_iff
Ideal.zero_mem
is_bot_adic_iff 📖mathematicalIsAdic
Bot.bot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DiscreteTopology
IsScalarTower.right
isAdic_iff
discreteTopology_iff_isOpen_singleton_zero
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
pow_one
mem_of_mem_nhds
is_ideal_adic_pow 📖mathematicalIsAdicIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
IsScalarTower.right
isAdic_iff
pow_mul
Set.Subset.trans
Ideal.pow_le_pow_right

---

← Back to Index