Documentation Verification Report

Bases

πŸ“ Source: Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean

Statistics

MetricCount
DefinitionsΒ«non-Archimedean_non-instancesΒ», SubmodulesBasis, moduleFilterBasis, RingSubgroupsBasis, openAddSubgroup, toRingFilterBasis, topology, SubmodulesBasis, openAddSubgroup, toModuleFilterBasis, topology, SubmodulesRingBasis, topology
13
Theoremsinter, smul, submodulesBasisIsBasis, hasBasis_nhds, hasBasis_nhds_zero, inter, leftMul, mem_addGroupFilterBasis, mem_addGroupFilterBasis_iff, mul, nonarchimedean, of_comm, rightMul, inter, nonarchimedean, smul, inter, leftMul, mul, toRing_subgroups_basis, toSubmodulesBasis
21
Total34

LibraryNote

Definitions

NameCategoryTheorems
Β«non-Archimedean_non-instancesΒ» πŸ“–CompOpβ€”

RingFilterBasis

Definitions

NameCategoryTheorems
SubmodulesBasis πŸ“–CompData
1 mathmath: Ideal.adic_module_basis
moduleFilterBasis πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
submodulesBasisIsBasis πŸ“–mathematicalSubmodulesBasisSubmodulesBasis
topology
CommRing.toRing
β€”SubmodulesBasis.inter
SubmodulesBasis.smul
Filter.mem_of_superset
AddGroupFilterBasis.mem_nhds_zero

RingFilterBasis.SubmodulesBasis

Theorems

NameKindAssumesProvesValidatesDepends On
inter πŸ“–mathematicalRingFilterBasis.SubmodulesBasisSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instMin
β€”β€”
smul πŸ“–mathematicalRingFilterBasis.SubmodulesBasisSet
RingFilterBasis
CommRing.toRing
RingFilterBasis.instMembershipSet
Set.instHasSubset
Set.preimage
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SetLike.coe
Submodule
Submodule.setLike
β€”β€”

RingSubgroupsBasis

Definitions

NameCategoryTheorems
openAddSubgroup πŸ“–CompOpβ€”
toRingFilterBasis πŸ“–CompOp
3 mathmath: Valued.toUniformSpace_eq, mem_addGroupFilterBasis, mem_addGroupFilterBasis_iff
topology πŸ“–CompOp
4 mathmath: Valued.toUniformSpace_eq, hasBasis_nhds_zero, hasBasis_nhds, nonarchimedean

Theorems

NameKindAssumesProvesValidatesDepends On
hasBasis_nhds πŸ“–mathematicalRingSubgroupsBasisFilter.HasBasis
nhds
topology
setOf
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SetLike.instMembership
AddSubgroup.instSetLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”Filter.HasBasis.mem_iff
AddGroupFilterBasis.nhds_hasBasis
Set.image_add_left
neg_add_eq_sub
Set.ext
Set.image_subset_iff
add_sub_cancel_left
hasBasis_nhds_zero πŸ“–mathematicalRingSubgroupsBasisFilter.HasBasis
nhds
topology
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.coe
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
β€”Filter.HasBasis.mem_iff
AddGroupFilterBasis.nhds_zero_hasBasis
inter πŸ“–mathematicalRingSubgroupsBasisAddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.instMin
β€”β€”
leftMul πŸ“–mathematicalRingSubgroupsBasisSet
Set.instHasSubset
SetLike.coe
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
Set.preimage
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
mem_addGroupFilterBasis πŸ“–mathematicalRingSubgroupsBasisSet
AddGroupFilterBasis
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddGroupFilterBasis.instMembershipSet
RingFilterBasis.toAddGroupFilterBasis
toRingFilterBasis
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
β€”β€”
mem_addGroupFilterBasis_iff πŸ“–mathematicalRingSubgroupsBasisSet
AddGroupFilterBasis
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddGroupFilterBasis.instMembershipSet
RingFilterBasis.toAddGroupFilterBasis
toRingFilterBasis
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
β€”β€”
mul πŸ“–mathematicalRingSubgroupsBasisSet
Set.instHasSubset
Set.mul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.coe
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
β€”β€”
nonarchimedean πŸ“–mathematicalRingSubgroupsBasisNonarchimedeanRing
topology
β€”RingFilterBasis.isTopologicalRing
Filter.HasBasis.mem_iff
hasBasis_nhds_zero
of_comm πŸ“–mathematicalAddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
AddSubgroup.instMin
Set
Set.instHasSubset
Set.mul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SetLike.coe
AddSubgroup.instSetLike
Set.preimage
RingSubgroupsBasisβ€”mul_comm
rightMul πŸ“–mathematicalRingSubgroupsBasisSet
Set.instHasSubset
SetLike.coe
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
Set.preimage
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”

SubmodulesBasis

Definitions

NameCategoryTheorems
openAddSubgroup πŸ“–CompOpβ€”
toModuleFilterBasis πŸ“–CompOpβ€”
topology πŸ“–CompOp
1 mathmath: nonarchimedean

Theorems

NameKindAssumesProvesValidatesDepends On
inter πŸ“–mathematicalSubmodulesBasisSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instMin
β€”β€”
nonarchimedean πŸ“–mathematicalSubmodulesBasisNonarchimedeanAddGroup
AddCommGroup.toAddGroup
topology
β€”AddGroupFilterBasis.isTopologicalAddGroup
Filter.HasBasis.mem_iff
AddGroupFilterBasis.nhds_zero_hasBasis
smul πŸ“–mathematicalSubmodulesBasisFilter.Eventually
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”

SubmodulesRingBasis

Definitions

NameCategoryTheorems
topology πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
inter πŸ“–mathematicalSubmodulesRingBasisSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instMin
β€”β€”
leftMul πŸ“–mathematicalSubmodulesRingBasisSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Submodule.pointwiseDistribMulAction
Module.toDistribMulAction
Semiring.toModule
IsScalarTower.to_smulCommClass'
IsScalarTower.right
β€”β€”
mul πŸ“–mathematicalSubmodulesRingBasisSet
Set.instHasSubset
Set.mul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SetLike.coe
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
Submodule.setLike
β€”β€”
toRing_subgroups_basis πŸ“–mathematicalSubmodulesRingBasisRingSubgroupsBasis
CommRing.toRing
Submodule.toAddSubgroup
Ring.toAddCommGroup
Algebra.toModule
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”RingSubgroupsBasis.of_comm
inter
mul
IsScalarTower.to_smulCommClass'
IsScalarTower.right
leftMul
toSubmodulesBasis πŸ“–mathematicalSubmodulesRingBasis
Filter.Eventually
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
SetLike.instMembership
Submodule.setLike
Algebra.toSMul
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
SubmodulesBasis
Ring.toAddCommGroup
CommRing.toRing
β€”inter

(root)

Definitions

NameCategoryTheorems
RingSubgroupsBasis πŸ“–CompData
3 mathmath: SubmodulesRingBasis.toRing_subgroups_basis, Valuation.subgroups_basis, RingSubgroupsBasis.of_comm
SubmodulesBasis πŸ“–CompData
2 mathmath: RingFilterBasis.submodulesBasisIsBasis, SubmodulesRingBasis.toSubmodulesBasis
SubmodulesRingBasis πŸ“–CompData
1 mathmath: Ideal.adic_basis

---

← Back to Index