Documentation Verification Report

Archimedean

πŸ“ Source: Mathlib/Topology/Algebra/Order/Archimedean.lean

Statistics

MetricCount
DefinitionsArchimedean
1
Theoremsdense_iff_ne_zmultiples, dense_of_no_min, dense_of_not_isolated_zero, dense_or_cyclic, dense_xor'_cyclic, denseRange_cast, dense_iff_ne_zpowers, dense_of_no_min, dense_of_not_isolated_one, dense_or_cyclic, dense_xor'_cyclic
11
Total12

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
dense_iff_ne_zmultiples πŸ“–mathematicalβ€”Dense
SetLike.coe
AddSubgroup
AddCommGroup.toAddGroup
instSetLike
β€”xor_iff_iff_not
dense_xor'_cyclic
dense_of_no_min πŸ“–mathematicalIsLeast
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
setOf
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Dense
SetLike.coe
β€”dense_of_not_isolated_zero
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_exists
Mathlib.Tactic.Push.not_and_eq
exists_isLeast_pos
Set.disjoint_left
dense_of_not_isolated_zero πŸ“–mathematicalAddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
Set
Set.instMembership
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Dense
SetLike.coe
β€”subsingleton_or_nontrivial
subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
dense_of_exists_between
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ExistsUnique.exists
existsUnique_add_zsmul_mem_Ioc
zsmul_mem
zero_add
LE.le.trans_lt
lt_sub_iff_add_lt'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
dense_or_cyclic πŸ“–mathematicalβ€”Dense
SetLike.coe
AddSubgroup
AddCommGroup.toAddGroup
instSetLike
closure
Set
Set.instSingletonSet
β€”dense_of_not_isolated_zero
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_exists
Mathlib.Tactic.Push.not_and_eq
cyclic_of_isolated_zero
Set.disjoint_left
em
dense_xor'_cyclic πŸ“–mathematicalβ€”Xor'
Dense
SetLike.coe
AddSubgroup
AddCommGroup.toAddGroup
instSetLike
zmultiples
β€”xor_true
not_denseRange_zsmul
zmultiples_eq_closure
xor_false
dense_or_cyclic

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
denseRange_cast πŸ“–mathematicalβ€”DenseRange
DivisionRing.toRatCast
Field.toDivisionRing
β€”dense_of_exists_between
DivisionRing.toNontrivial
Set.exists_range_iff
exists_rat_btwn

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
dense_iff_ne_zpowers πŸ“–mathematicalβ€”Dense
SetLike.coe
Subgroup
CommGroup.toGroup
instSetLike
β€”xor_iff_iff_not
dense_xor'_cyclic
dense_of_no_min πŸ“–mathematicalIsLeast
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
setOf
Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
Preorder.toLT
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Dense
SetLike.coe
β€”dense_of_not_isolated_one
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
exists_isLeast_one_lt
Set.disjoint_left
dense_of_not_isolated_one πŸ“–mathematicalSubgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
Set
Set.instMembership
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Dense
SetLike.coe
β€”subsingleton_or_nontrivial
subset_closure
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
dense_of_exists_between
one_lt_div'
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
RightCancelSemigroup.toIsRightCancelMul
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ExistsUnique.exists
existsUnique_add_zpow_mem_Ioc
zpow_mem
one_mul
LE.le.trans_lt
lt_div_iff_mul_lt'
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
dense_or_cyclic πŸ“–mathematicalβ€”Dense
SetLike.coe
Subgroup
CommGroup.toGroup
instSetLike
closure
Set
Set.instSingletonSet
β€”dense_of_not_isolated_one
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
cyclic_of_isolated_one
Set.disjoint_left
em
dense_xor'_cyclic πŸ“–mathematicalβ€”Xor'
Dense
SetLike.coe
Subgroup
CommGroup.toGroup
instSetLike
zpowers
β€”xor_true
not_denseRange_zpow
zpowers_eq_closure
xor_false
dense_or_cyclic

(root)

Definitions

NameCategoryTheorems
Archimedean πŸ“–CompData
26 mathmath: Real.instArchimedean, AddUnits.instAddArchimedean, archimedean_iff_nat_le, instArchimedeanNat, OrderDual.instAddArchimedean, FloorRing.archimedean, Nonneg.instArchimedean, instArchimedeanNNRat, ConditionallyCompleteLinearOrderedField.to_archimedean, Additive.instArchimedean, archimedean_iff_nat_lt, OrderAddMonoidIso.addArchimedean, Archimedean.comap, archimedean_iff_rat_le, ArchimedeanClass.archimedean_of_mk_eq_mk, AddSubmonoidClass.instAddArchimedean, ArchimedeanClass.FiniteResidueField.instArchimedean, WithBot.instArchimedean, HahnEmbedding.ArchimedeanStrata.archimedean_stratum, archimedean_iff_int_lt, archimedean_iff_rat_lt, instArchimedeanInt, instArchimedeanRat, NNReal.instArchimedean, archimedean_iff_int_le, Archimedean.of_locallyFiniteOrder

---

← Back to Index