Documentation Verification Report

ArchimedeanDiscrete

📁 Source: Mathlib/Topology/Algebra/Order/ArchimedeanDiscrete.lean

Statistics

MetricCount
Definitions0
Theoremsdiscrete_iff_addCyclic, instDiscreteTopologyZMultiples, instIsAddCyclicOfDiscreteTopology, discrete_iff_cyclic, instDiscreteTopologyZMultiples, instIsCyclicOfDiscreteTopology
6
Total6

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
discrete_iff_addCyclic 📖mathematicalIsAddCyclic
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
zsmul
DiscreteTopology
instTopologicalSpaceSubtype
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
isAddCyclic_of_subsingleton
instSubsingletonSubtype_mathlib
Subsingleton.discreteTopology
isAddCyclic_iff_exists_zmultiples_eq_top
instDiscreteTopologyZMultiples
dense_or_cyclic
zmultiples_eq_closure
Homeomorph.discreteTopology_iff
isAddCyclic_iff_exists_zmultiples_eq_top
instIsAddCyclicOfDiscreteTopology
coe_eq_univ
dense_iff_closure_eq
IsClosed.closure_eq
isClosed_of_discrete
LinearOrderedAddCommGroup.toIsTopologicalAddGroup
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
instDiscreteTopologyZMultiples 📖mathematicalDiscreteTopology
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
zmultiples
instTopologicalSpaceSubtype
eq_or_lt_of_le
zmultiples_zero_eq_bot
Subsingleton.discreteTopology
Unique.instSubsingleton
discreteTopology_iff_isOpen_singleton_zero
IsTopologicalAddGroup.toContinuousAdd
instIsTopologicalAddGroupSubtypeMem
LinearOrderedAddCommGroup.toIsTopologicalAddGroup
isOpen_induced_iff
isOpen_Ioo
OrderTopology.to_orderClosedTopology
Set.ext
Set.mem_preimage
Set.mem_Ioo
Set.mem_singleton_iff
zsmul_lt_zsmul_iff_left
zero_zsmul
neg_zsmul
one_zsmul
Left.neg_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
zmultiples_neg
neg_nonneg
le_of_not_ge
instIsAddCyclicOfDiscreteTopology 📖mathematicalIsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
isAddCyclic_of_subsingleton
LinearOrderedAddCommGroup.isAddCyclic_iff_not_denselyOrdered
DenselyOrdered.subsingleton_of_discreteTopology
false_of_nontrivial_of_subsingleton

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
discrete_iff_cyclic 📖mathematicalIsCyclic
Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
zpow
DiscreteTopology
instTopologicalSpaceSubtype
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
instSubsingletonSubtype_mathlib
isCyclic_iff_exists_zpowers_eq_top
instDiscreteTopologyZMultiples
dense_or_cyclic
Homeomorph.discreteTopology_iff
isCyclic_iff_exists_zpowers_eq_top
instIsCyclicOfDiscreteTopology
coe_eq_univ
dense_iff_closure_eq
IsClosed.closure_eq
isClosed_of_discrete
LinearOrderedCommGroup.toIsTopologicalGroup
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
instDiscreteTopologyZMultiples 📖mathematicalDiscreteTopology
Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
zpowers
instTopologicalSpaceSubtype
eq_or_lt_of_le
zpowers_one_eq_bot
Subsingleton.discreteTopology
Unique.instSubsingleton
discreteTopology_iff_isOpen_singleton_one
IsTopologicalGroup.toContinuousMul
instIsTopologicalGroupSubtypeMem
LinearOrderedCommGroup.toIsTopologicalGroup
isOpen_induced_iff
isOpen_Ioo
OrderTopology.to_orderClosedTopology
Set.ext
zpow_lt_zpow_iff_right
zpow_zero
zpow_neg
zpow_one
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
zpowers_inv
one_le_inv'
le_of_not_ge
instIsCyclicOfDiscreteTopology 📖mathematicalIsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
isCyclic_of_subsingleton
LinearOrderedCommGroup.isCyclic_iff_not_denselyOrdered
DenselyOrdered.subsingleton_of_discreteTopology
false_of_nontrivial_of_subsingleton

---

← Back to Index