Documentation Verification Report

LiminfLimsup

📁 Source: Mathlib/Topology/Algebra/Order/LiminfLimsup.lean

Statistics

MetricCount
Definitions0
Theoremsle_liminf_add, le_liminf_mul, le_limsup_add, le_limsup_mul, liminf_add_const, liminf_add_le, liminf_const_add, liminf_const_sub, liminf_mul_le, liminf_sub_const, limsup_add_const, limsup_add_le, limsup_const_add, limsup_const_sub, limsup_mul_le, limsup_sub_const
16
Total16

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
le_liminf_add 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsCoboundedUnder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Filter.liminf
Pi.instAdd
Filter.isCoboundedUnder_ge_add
covariant_swap_add_of_covariant_add
Filter.isBoundedUnder_ge_add
add_le_of_forall_lt
Filter.le_liminf_iff
Filter.mp_mem
Filter.eventually_lt_of_lt_liminf
Filter.univ_mem'
LT.lt.trans
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
le_liminf_mul 📖mathematicalFilter.EventuallyLE
Real
Real.instLE
Pi.instZero
Real.instZero
Filter.IsBoundedUnder
Filter.IsCoboundedUnder
Real.instMul
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
Pi.instMul
Filter.isCoboundedUnder_ge_mul_of_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
Filter.isBoundedUnder_of_eventually_ge
Filter.Eventually.mono
Filter.Eventually.and
mul_nonneg
mul_le_of_forall_lt_of_nonneg
Real.instIsStrictOrderedRing
Filter.le_liminf_of_le
Filter.IsBoundedUnder.isCoboundedUnder_ge
Filter.le_liminf_iff
Filter.mp_mem
Filter.eventually_lt_of_lt_liminf
Filter.univ_mem'
LT.lt.trans_le
mul_le_mul
LT.lt.le
LE.le.trans
le_limsup_add 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsCoboundedUnder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Filter.limsup
Filter.liminf
Pi.instAdd
Filter.isCoboundedUnder_le_add
covariant_swap_add_of_covariant_add
Filter.isBoundedUnder_le_add
add_le_of_forall_lt
Filter.le_limsup_iff
add_comm
Filter.Frequently.mono
Filter.Frequently.and_eventually
Filter.frequently_lt_of_lt_limsup
Filter.eventually_lt_of_lt_liminf
LT.lt.trans
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
le_limsup_mul 📖mathematicalFilter.Frequently
Real
Real.instLE
Real.instZero
Filter.IsBoundedUnder
Filter.EventuallyLE
Pi.instZero
Real.instMul
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
Filter.liminf
Pi.instMul
Filter.IsCoboundedUnder.of_frequently_ge
Filter.Frequently.mono
Filter.Frequently.and_eventually
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Filter.isBoundedUnder_le_mul_of_nonneg
IsOrderedRing.toMulPosMono
Filter.le_limsup_of_frequently_le
mul_le_of_forall_lt_of_nonneg
Real.instIsStrictOrderedRing
Filter.le_limsup_iff
Filter.frequently_lt_of_lt_limsup
Filter.eventually_lt_of_lt_liminf
Filter.isBoundedUnder_of_eventually_ge
Filter.Eventually.and
LT.lt.trans_le
mul_le_mul
LT.lt.le
LE.le.trans
liminf_add_const 📖mathematicalFilter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsBoundedUnder
Filter.liminfMonotone.map_limsInf_of_continuousAt
Filter.map_neBot
add_le_add_left
Continuous.continuousAt
continuous_add_right
liminf_add_le 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsCoboundedUnder
Filter.liminf
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Filter.limsup
Filter.isCoboundedUnder_ge_add
covariant_swap_add_of_covariant_add
Filter.isBoundedUnder_ge_add
le_add_of_forall_lt
Filter.liminf_le_iff
Filter.Frequently.mono
Filter.Frequently.and_eventually
Filter.frequently_lt_of_liminf_lt
Filter.eventually_lt_of_limsup_lt
LT.lt.trans
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
liminf_const_add 📖mathematicalFilter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsBoundedUnder
Filter.liminfMonotone.map_limsInf_of_continuousAt
Filter.map_neBot
add_le_add_right
Continuous.continuousAt
continuous_add_left
liminf_const_sub 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsCoboundedUnder
Filter.liminf
Filter.limsup
Antitone.map_limsSup_of_continuousAt
Filter.map_neBot
tsub_le_tsub_left
Continuous.continuousAt
continuous_sub_left
liminf_mul_le 📖mathematicalFilter.EventuallyLE
Real
Real.instLE
Pi.instZero
Real.instZero
Filter.IsBoundedUnder
Filter.IsCoboundedUnder
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
Pi.instMul
Real.instMul
Filter.limsup
Filter.isCoboundedUnder_ge_mul_of_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
Filter.isBoundedUnder_of_eventually_ge
Filter.Eventually.mono
Filter.Eventually.and
mul_nonneg
le_mul_of_forall_lt₀
Real.instIsStrictOrderedRing
Filter.liminf_le_iff
Filter.Frequently.mono
Filter.Frequently.and_eventually
Filter.frequently_lt_of_liminf_lt
Filter.eventually_lt_of_limsup_lt
LE.le.trans_lt
mul_le_mul
LT.lt.le
LE.le.trans
liminf_sub_const 📖mathematicalFilter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsBoundedUnder
Filter.liminfMonotone.map_limsInf_of_continuousAt
Filter.map_neBot
tsub_le_tsub_right
Continuous.continuousAt
continuous_sub_right
limsup_add_const 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsCoboundedUnder
Filter.limsupMonotone.map_limsSup_of_continuousAt
Filter.map_neBot
add_le_add_left
Continuous.continuousAt
continuous_add_right
limsup_add_le 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsCoboundedUnder
Filter.limsup
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Filter.isCoboundedUnder_le_add
covariant_swap_add_of_covariant_add
Filter.isBoundedUnder_le_add
le_add_of_forall_lt
Filter.limsup_le_iff
Filter.mp_mem
Filter.eventually_lt_of_limsup_lt
Filter.univ_mem'
LT.lt.trans
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
limsup_const_add 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsCoboundedUnder
Filter.limsupMonotone.map_limsSup_of_continuousAt
Filter.map_neBot
add_le_add_right
Continuous.continuousAt
continuous_add_left
limsup_const_sub 📖mathematicalFilter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsBoundedUnder
Filter.limsup
Filter.liminf
Filter.eq_or_neBot
Filter.map_bot
LE.le.antisymm
csInf_le
mem_lowerBounds
tsub_le_iff_tsub_le
Set.mem_univ
le_csSup
mem_upperBounds
Antitone.map_limsInf_of_continuousAt
Filter.map_neBot
tsub_le_tsub_left
Continuous.continuousAt
continuous_sub_left
limsup_mul_le 📖mathematicalFilter.Frequently
Real
Real.instLE
Real.instZero
Filter.IsBoundedUnder
Filter.EventuallyLE
Pi.instZero
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
Pi.instMul
Real.instMul
Filter.IsCoboundedUnder.of_frequently_ge
Filter.Frequently.mono
Filter.Frequently.and_eventually
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Filter.isBoundedUnder_le_mul_of_nonneg
IsOrderedRing.toMulPosMono
le_mul_of_forall_lt₀
Real.instIsStrictOrderedRing
Filter.limsup_le_iff
Filter.mp_mem
Filter.eventually_lt_of_limsup_lt
Filter.univ_mem'
lt_of_le_of_lt
lt_or_ge
LE.le.trans
mul_nonpos_of_nonpos_of_nonneg
LT.lt.le
Filter.le_limsup_of_frequently_le
mul_le_mul
limsup_sub_const 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsCoboundedUnder
Filter.limsupFilter.eq_or_neBot
csInf_le
Filter.map_bot
mem_lowerBounds
Set.mem_univ
LE.le.antisymm
tsub_le_iff_right
Monotone.map_limsSup_of_continuousAt
Filter.map_neBot
tsub_le_tsub_right
Continuous.continuousAt
continuous_sub_right

---

← Back to Index