Documentation Verification Report

PontryaginDual

📁 Source: Mathlib/Topology/Algebra/PontryaginDual.lean

Statistics

MetricCount
DefinitionsPontryaginDual, instCommGroup, instCompactSpaceOfDiscreteTopology, instContinuousMapClassCircle, instFunLikeCircle, instInhabited, instIsTopologicalGroup, instMonoidHomClassCircle, instT2Space, map, mapHom, instTopologicalSpacePontryaginDual
12
Theoremsmap_apply, map_comp, map_mul, map_one, instLocallyCompactSpacePontryaginDual
5
Total17

PontryaginDual

Definitions

NameCategoryTheorems
instCommGroup 📖CompOp
4 mathmath: map_one, map_mul, map_apply, map_comp
instCompactSpaceOfDiscreteTopology 📖CompOp
instContinuousMapClassCircle 📖CompOp
instFunLikeCircle 📖CompOp
1 mathmath: map_apply
instInhabited 📖CompOp
instIsTopologicalGroup 📖CompOp
1 mathmath: map_mul
instMonoidHomClassCircle 📖CompOp
instT2Space 📖CompOp
map 📖CompOp
4 mathmath: map_one, map_mul, map_apply, map_comp
mapHom 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
map_apply 📖mathematicalDFunLike.coe
PontryaginDual
Circle
instFunLikeCircle
ContinuousMonoidHom
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
instTopologicalSpacePontryaginDual
ContinuousMonoidHom.instFunLike
map
map_comp 📖mathematicalmap
ContinuousMonoidHom.comp
PontryaginDual
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
instTopologicalSpacePontryaginDual
ContinuousMonoidHom.ext
map_mul 📖mathematicalmap
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
ContinuousMonoidHom
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
ContinuousMonoidHom.instCommGroup
PontryaginDual
instCommGroup
instTopologicalSpacePontryaginDual
instIsTopologicalGroup
ContinuousMonoidHom.ext
map_mul
MonoidHomClass.toMulHomClass
map_one 📖mathematicalmap
ContinuousMonoidHom
ContinuousMonoidHom.instOne
PontryaginDual
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
instTopologicalSpacePontryaginDual
ContinuousMonoidHom.ext
OneHomClass.map_one
MonoidHomClass.toOneHomClass

(root)

Definitions

NameCategoryTheorems
PontryaginDual 📖CompOp
5 mathmath: PontryaginDual.map_one, PontryaginDual.map_mul, instLocallyCompactSpacePontryaginDual, PontryaginDual.map_apply, PontryaginDual.map_comp
instTopologicalSpacePontryaginDual 📖CompOp
5 mathmath: PontryaginDual.map_one, PontryaginDual.map_mul, instLocallyCompactSpacePontryaginDual, PontryaginDual.map_apply, PontryaginDual.map_comp

Theorems

NameKindAssumesProvesValidatesDepends On
instLocallyCompactSpacePontryaginDual 📖mathematicalLocallyCompactSpace
PontryaginDual
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instTopologicalSpacePontryaginDual
Nat.instAtLeastTwoHAddOfNat
LT.lt.trans_le
div_le_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.pi_nonneg
one_le_pow₀
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
one_le_two
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Circle.arg_exp
neg_lt_of_abs_lt
covariant_swap_add_of_covariant_add
LT.lt.le
lt_of_abs_lt
Circle.exp_arg
ContinuousMonoidHom.locallyCompactSpace_of_hasBasis
Circle.instIsUniformGroup
T3Space.toT0Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
EMetric.instIsCountablyGeneratedUniformity
Circle.instCompactSpace
pow_succ
div_div
lt_div_iff₀'
two_pos
NeZero.charZero_one
RCLike.charZero_rclike
abs_two
abs_mul
two_mul
Complex.arg_mul
Circle.coe_ne_zero
Set.Ioo_subset_Ioc_self
Set.mem_Ioo
abs_lt
div_le_div₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
Real.pi_pos
le_refl
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
le_self_pow₀
Circle.coe_mul
Circle.exp_zero
IsLocalHomeomorph.map_nhds_eq
isLocalHomeomorph_circleExp
Filter.HasBasis.map
Filter.HasBasis.to_hasBasis
nhds_basis_zero_abs_lt
instOrderTopologyReal
instNoMaxOrderOfNontrivial
Set.mem_setOf_eq
lt_of_lt_of_le
div_le_iff₀'
pow_pos
div_le_iff₀
LE.le.trans
Nat.le_ceil
div_pos
IsStrictOrderedRing.toZeroLEOneClass
le_rfl

---

← Back to Index