| Name | Category | Theorems |
coeAddMonoidHom π | CompOp | β |
coeMonoidHom π | CompOp | β |
evalAddMonoidHom π | CompOp | β |
evalMonoidHom π | CompOp | 1 mathmath: evalMonoidHom_apply
|
evalRingHom π | CompOp | 1 mathmath: evalRingHom_apply
|
inclusion π | CompOp | 18 mathmath: image_coe_preimage_inclusion_subset, inclusion_apply, nhds_zero_eq_map_ofPre, continuous_dom, continuous_dom_prod, inclusion_eq_id, exists_inclusion_eq_of_eventually, continuous_inclusion, isEmbedding_inclusion_top, continuous_dom_pi, range_inclusion, continuous_dom_prod_right, coe_comp_inclusion, isEmbedding_inclusion_principal, topologicalSpace_eq_iSup, continuous_dom_prod_left, isOpenEmbedding_inclusion_principal, nhds_eq_map_inclusion
|
instAddCoeOfAddMemClass π | CompOp | 4 mathmath: instContinuousAddCoePrincipal, single_add, instContinuousAddCoeCofinite, add_apply
|
instAddCommGroupCoeOfAddSubgroupClass π | CompOp | β |
instAddCommMonoidCoeOfAddSubmonoidClass π | CompOp | β |
instAddGroupCoeOfAddSubgroupClass π | CompOp | 2 mathmath: instIsTopologicalAddGroupCoePrincipal, isTopologicalAddGroup
|
instAddMonoidCoeOfAddSubmonoidClass π | CompOp | 1 mathmath: mapAlongAddMonoidHom_apply
|
instCommGroupCoeOfSubgroupClass π | CompOp | β |
instCommMonoidCoeOfSubmonoidClass π | CompOp | β |
instCommRingCoeOfSubringClass π | CompOp | β |
instDFunLike π | CompOp | 54 mathmath: image_coe_preimage_inclusion_subset, continuous_rng_of_principal, one_apply, continuous_coe, sub_apply, single_mul, inclusion_apply, coe_comp_structureMap, mapAlong_apply, zsmul_apply, mul_single, smul_apply, nsmul_apply, mulSingle_eq_of_ne', continuous_rng_of_top, ext_iff, coe_single_apply, comp_single, isEmbedding_coe_of_principal, evalRingHom_apply, mapAlongRingHom_apply, topologicalSpace_eq_of_principal, vadd_apply, inv_apply, range_coe_principal, continuous_rng_of_principal_iff_forall, range_coe, eventually, structureMap_apply, comp_mulSingle, coe_mulSingle_apply, single_eq_of_ne, zero_apply, range_inclusion, neg_apply, isEmbedding_coe_of_top, coe_comp_inclusion, continuous_eval, topologicalSpace_eq_of_bot, mapAlongAddMonoidHom_apply, evalMonoidHom_apply, mk_apply, isEmbedding_coe_of_bot, zpow_apply, add_apply, topologicalSpace_eq_of_top, div_apply, map_apply, mapAlongMonoidHom_apply, single_eq_of_ne', continuous_rng_of_bot, mulSingle_eq_of_ne, pow_apply, mul_apply
|
instDivCoeOfSubgroupClass π | CompOp | 2 mathmath: div_apply, mulSingle_div
|
instGroupCoeOfSubgroupClass π | CompOp | 2 mathmath: instIsTopologicalGroupCoePrincipal, isTopologicalGroup
|
instIntCastCoeOfSubringClass π | CompOp | β |
instInvCoeOfInvMemClass π | CompOp | 3 mathmath: mulSingle_inv, inv_apply, instContinuousInvCoe
|
instModuleCoeOfSMulMemClass π | CompOp | β |
instMonoidCoeOfSubmonoidClass π | CompOp | 2 mathmath: evalMonoidHom_apply, mapAlongMonoidHom_apply
|
instMulCoeOfMulMemClass π | CompOp | 6 mathmath: instContinuousMulCoePrincipal, single_mul, mul_single, mulSingle_mul, instContinuousMulCoeCofinite, mul_apply
|
instNSMul π | CompOp | 2 mathmath: nsmul_apply, single_nsmul
|
instNatCastCoeOfAddSubmonoidWithOneClass π | CompOp | β |
instNegCoeOfNegMemClass π | CompOp | 3 mathmath: instContinuousNegCoe, neg_apply, single_neg
|
instOneCoeOfOneMemClass π | CompOp | 3 mathmath: one_apply, mulSingle_one, mulSingle_eq_one_iff
|
instPowCoeIntOfSubgroupClass π | CompOp | 2 mathmath: mulSingle_zpow, zpow_apply
|
instPowCoeNatOfSubmonoidClass π | CompOp | 2 mathmath: mulSingle_pow, pow_apply
|
instRingCoeOfSubringClass π | CompOp | 4 mathmath: instIsTopologicalRingCoePrincipal, evalRingHom_apply, mapAlongRingHom_apply, isTopologicalRing
|
instSMulCoeOfSMulMemClass π | CompOp | 4 mathmath: smul_apply, instContinuousConstSMulCoe, instContinuousSMulCoePrincipal, continuousSMul
|
instSubCoeOfAddSubgroupClass π | CompOp | 2 mathmath: sub_apply, single_sub
|
instVAddCoeOfVAddMemClass π | CompOp | 4 mathmath: vadd_apply, instContinuousConstVAddCoe, continuousVAdd, instContinuousVAddCoePrincipal
|
instZSMul π | CompOp | 2 mathmath: zsmul_apply, single_zsmul
|
instZeroCoeOfZeroMemClass π | CompOp | 4 mathmath: single_eq_zero_iff, nhds_zero_eq_map_ofPre, single_zero, zero_apply
|
map π | CompOp | 1 mathmath: map_apply
|
mapAlong π | CompOp | 2 mathmath: mapAlong_apply, mapAlong_continuous
|
mapAlongAddMonoidHom π | CompOp | 1 mathmath: mapAlongAddMonoidHom_apply
|
mapAlongMonoidHom π | CompOp | 1 mathmath: mapAlongMonoidHom_apply
|
mapAlongRingHom π | CompOp | 1 mathmath: mapAlongRingHom_apply
|
mk π | CompOp | β |
mulSingle π | CompOp | 13 mathmath: mulSingle_inv, mulSingle_zpow, mulSingle_injective, mulSingle_eq_of_ne', mulSingle_mul, comp_mulSingle, coe_mulSingle_apply, mulSingle_one, mulSingle_pow, mulSingle_inj, mulSingle_div, mulSingle_eq_of_ne, mulSingle_eq_one_iff
|
single π | CompOp | 15 mathmath: single_injective, single_eq_zero_iff, single_mul, mul_single, coe_single_apply, single_zero, comp_single, single_add, single_sub, single_inj, single_eq_of_ne, single_nsmul, single_zsmul, single_neg, single_eq_of_ne'
|
structureMap π | CompOp | 8 mathmath: coe_comp_structureMap, isOpenEmbedding_structureMap, nhds_eq_map_structureMap, structureMap_apply, exists_structureMap_eq_of_forall, nhds_zero_eq_map_structureMap, isEmbedding_structureMap, range_structureMap
|
Β«termΞ Κ³_,[_,_]_[_]Β» π | CompOp | β |
Β«termΞ Κ³_,[_,_]Β» π | CompOp | β |