Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean

Statistics

MetricCount
DefinitionsRestrictedProduct, coeAddMonoidHom, coeMonoidHom, evalAddMonoidHom, evalMonoidHom, evalRingHom, inclusion, instAddCoeOfAddMemClass, instAddCommGroupCoeOfAddSubgroupClass, instAddCommMonoidCoeOfAddSubmonoidClass, instAddGroupCoeOfAddSubgroupClass, instAddMonoidCoeOfAddSubmonoidClass, instCommGroupCoeOfSubgroupClass, instCommMonoidCoeOfSubmonoidClass, instCommRingCoeOfSubringClass, instDFunLike, instDivCoeOfSubgroupClass, instGroupCoeOfSubgroupClass, instIntCastCoeOfSubringClass, instInvCoeOfInvMemClass, instModuleCoeOfSMulMemClass, instMonoidCoeOfSubmonoidClass, instMulCoeOfMulMemClass, instNSMul, instNatCastCoeOfAddSubmonoidWithOneClass, instNegCoeOfNegMemClass, instOneCoeOfOneMemClass, instPowCoeIntOfSubgroupClass, instPowCoeNatOfSubmonoidClass, instRingCoeOfSubringClass, instSMulCoeOfSMulMemClass, instSubCoeOfAddSubgroupClass, instVAddCoeOfVAddMemClass, instZSMul, instZeroCoeOfZeroMemClass, map, mapAlong, mapAlongAddMonoidHom, mapAlongMonoidHom, mapAlongRingHom, mk, mulSingle, single, structureMap, Β«termΞ Κ³_,[_,_]_[_]Β», Β«termΞ Κ³_,[_,_]Β»
46
Theoremsadd_apply, coe_comp_inclusion, coe_comp_structureMap, coe_mulSingle_apply, coe_single_apply, comp_mulSingle, comp_single, div_apply, evalMonoidHom_apply, evalRingHom_apply, eventually, exists_inclusion_eq_of_eventually, exists_structureMap_eq_of_forall, ext, ext_iff, image_coe_preimage_inclusion_subset, inclusion_apply, inclusion_eq_id, inv_apply, mapAlongAddMonoidHom_apply, mapAlongMonoidHom_apply, mapAlongRingHom_apply, mapAlong_apply, map_apply, mk_apply, mulSingle_div, mulSingle_eq_of_ne, mulSingle_eq_of_ne', mulSingle_eq_one_iff, mulSingle_inj, mulSingle_injective, mulSingle_inv, mulSingle_mul, mulSingle_ne_one_iff, mulSingle_one, mulSingle_pow, mulSingle_zpow, mul_apply, mul_single, neg_apply, nsmul_apply, one_apply, pow_apply, range_coe, range_coe_principal, range_inclusion, range_structureMap, single_add, single_eq_of_ne, single_eq_of_ne', single_eq_zero_iff, single_inj, single_injective, single_mul, single_ne_zero_iff, single_neg, single_nsmul, single_sub, single_zero, single_zsmul, smul_apply, structureMap_apply, sub_apply, vadd_apply, zero_apply, zpow_apply, zsmul_apply
67
Total113

RestrictedProduct

Definitions

NameCategoryTheorems
coeAddMonoidHom πŸ“–CompOpβ€”
coeMonoidHom πŸ“–CompOpβ€”
evalAddMonoidHom πŸ“–CompOpβ€”
evalMonoidHom πŸ“–CompOp
1 mathmath: evalMonoidHom_apply
evalRingHom πŸ“–CompOp
1 mathmath: evalRingHom_apply
inclusion πŸ“–CompOp
18 mathmath: image_coe_preimage_inclusion_subset, inclusion_apply, nhds_zero_eq_map_ofPre, continuous_dom, continuous_dom_prod, inclusion_eq_id, exists_inclusion_eq_of_eventually, continuous_inclusion, isEmbedding_inclusion_top, continuous_dom_pi, range_inclusion, continuous_dom_prod_right, coe_comp_inclusion, isEmbedding_inclusion_principal, topologicalSpace_eq_iSup, continuous_dom_prod_left, isOpenEmbedding_inclusion_principal, nhds_eq_map_inclusion
instAddCoeOfAddMemClass πŸ“–CompOp
4 mathmath: instContinuousAddCoePrincipal, single_add, instContinuousAddCoeCofinite, add_apply
instAddCommGroupCoeOfAddSubgroupClass πŸ“–CompOpβ€”
instAddCommMonoidCoeOfAddSubmonoidClass πŸ“–CompOpβ€”
instAddGroupCoeOfAddSubgroupClass πŸ“–CompOp
2 mathmath: instIsTopologicalAddGroupCoePrincipal, isTopologicalAddGroup
instAddMonoidCoeOfAddSubmonoidClass πŸ“–CompOp
1 mathmath: mapAlongAddMonoidHom_apply
instCommGroupCoeOfSubgroupClass πŸ“–CompOpβ€”
instCommMonoidCoeOfSubmonoidClass πŸ“–CompOpβ€”
instCommRingCoeOfSubringClass πŸ“–CompOpβ€”
instDFunLike πŸ“–CompOp
54 mathmath: image_coe_preimage_inclusion_subset, continuous_rng_of_principal, one_apply, continuous_coe, sub_apply, single_mul, inclusion_apply, coe_comp_structureMap, mapAlong_apply, zsmul_apply, mul_single, smul_apply, nsmul_apply, mulSingle_eq_of_ne', continuous_rng_of_top, ext_iff, coe_single_apply, comp_single, isEmbedding_coe_of_principal, evalRingHom_apply, mapAlongRingHom_apply, topologicalSpace_eq_of_principal, vadd_apply, inv_apply, range_coe_principal, continuous_rng_of_principal_iff_forall, range_coe, eventually, structureMap_apply, comp_mulSingle, coe_mulSingle_apply, single_eq_of_ne, zero_apply, range_inclusion, neg_apply, isEmbedding_coe_of_top, coe_comp_inclusion, continuous_eval, topologicalSpace_eq_of_bot, mapAlongAddMonoidHom_apply, evalMonoidHom_apply, mk_apply, isEmbedding_coe_of_bot, zpow_apply, add_apply, topologicalSpace_eq_of_top, div_apply, map_apply, mapAlongMonoidHom_apply, single_eq_of_ne', continuous_rng_of_bot, mulSingle_eq_of_ne, pow_apply, mul_apply
instDivCoeOfSubgroupClass πŸ“–CompOp
2 mathmath: div_apply, mulSingle_div
instGroupCoeOfSubgroupClass πŸ“–CompOp
2 mathmath: instIsTopologicalGroupCoePrincipal, isTopologicalGroup
instIntCastCoeOfSubringClass πŸ“–CompOpβ€”
instInvCoeOfInvMemClass πŸ“–CompOp
3 mathmath: mulSingle_inv, inv_apply, instContinuousInvCoe
instModuleCoeOfSMulMemClass πŸ“–CompOpβ€”
instMonoidCoeOfSubmonoidClass πŸ“–CompOp
2 mathmath: evalMonoidHom_apply, mapAlongMonoidHom_apply
instMulCoeOfMulMemClass πŸ“–CompOp
6 mathmath: instContinuousMulCoePrincipal, single_mul, mul_single, mulSingle_mul, instContinuousMulCoeCofinite, mul_apply
instNSMul πŸ“–CompOp
2 mathmath: nsmul_apply, single_nsmul
instNatCastCoeOfAddSubmonoidWithOneClass πŸ“–CompOpβ€”
instNegCoeOfNegMemClass πŸ“–CompOp
3 mathmath: instContinuousNegCoe, neg_apply, single_neg
instOneCoeOfOneMemClass πŸ“–CompOp
3 mathmath: one_apply, mulSingle_one, mulSingle_eq_one_iff
instPowCoeIntOfSubgroupClass πŸ“–CompOp
2 mathmath: mulSingle_zpow, zpow_apply
instPowCoeNatOfSubmonoidClass πŸ“–CompOp
2 mathmath: mulSingle_pow, pow_apply
instRingCoeOfSubringClass πŸ“–CompOp
4 mathmath: instIsTopologicalRingCoePrincipal, evalRingHom_apply, mapAlongRingHom_apply, isTopologicalRing
instSMulCoeOfSMulMemClass πŸ“–CompOp
4 mathmath: smul_apply, instContinuousConstSMulCoe, instContinuousSMulCoePrincipal, continuousSMul
instSubCoeOfAddSubgroupClass πŸ“–CompOp
2 mathmath: sub_apply, single_sub
instVAddCoeOfVAddMemClass πŸ“–CompOp
4 mathmath: vadd_apply, instContinuousConstVAddCoe, continuousVAdd, instContinuousVAddCoePrincipal
instZSMul πŸ“–CompOp
2 mathmath: zsmul_apply, single_zsmul
instZeroCoeOfZeroMemClass πŸ“–CompOp
4 mathmath: single_eq_zero_iff, nhds_zero_eq_map_ofPre, single_zero, zero_apply
map πŸ“–CompOp
1 mathmath: map_apply
mapAlong πŸ“–CompOp
2 mathmath: mapAlong_apply, mapAlong_continuous
mapAlongAddMonoidHom πŸ“–CompOp
1 mathmath: mapAlongAddMonoidHom_apply
mapAlongMonoidHom πŸ“–CompOp
1 mathmath: mapAlongMonoidHom_apply
mapAlongRingHom πŸ“–CompOp
1 mathmath: mapAlongRingHom_apply
mk πŸ“–CompOpβ€”
mulSingle πŸ“–CompOp
13 mathmath: mulSingle_inv, mulSingle_zpow, mulSingle_injective, mulSingle_eq_of_ne', mulSingle_mul, comp_mulSingle, coe_mulSingle_apply, mulSingle_one, mulSingle_pow, mulSingle_inj, mulSingle_div, mulSingle_eq_of_ne, mulSingle_eq_one_iff
single πŸ“–CompOp
15 mathmath: single_injective, single_eq_zero_iff, single_mul, mul_single, coe_single_apply, single_zero, comp_single, single_add, single_sub, single_inj, single_eq_of_ne, single_nsmul, single_zsmul, single_neg, single_eq_of_ne'
structureMap πŸ“–CompOp
8 mathmath: coe_comp_structureMap, isOpenEmbedding_structureMap, nhds_eq_map_structureMap, structureMap_apply, exists_structureMap_eq_of_forall, nhds_zero_eq_map_structureMap, isEmbedding_structureMap, range_structureMap
Β«termΞ Κ³_,[_,_]_[_]Β» πŸ“–CompOpβ€”
Β«termΞ Κ³_,[_,_]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalAddMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instAddCoeOfAddMemClass
β€”β€”
coe_comp_inclusion πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
RestrictedProduct
DFunLike.coe
instDFunLike
inclusion
β€”β€”
coe_comp_structureMap πŸ“–mathematicalβ€”RestrictedProduct
DFunLike.coe
instDFunLike
structureMap
Set
Set.instMembership
β€”β€”
coe_mulSingle_apply πŸ“–mathematicalOneMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
Filter.cofinite
instDFunLike
mulSingle
Pi.mulSingle
β€”β€”
coe_single_apply πŸ“–mathematicalZeroMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
Filter.cofinite
instDFunLike
single
Pi.single
β€”β€”
comp_mulSingle πŸ“–mathematicalOneMemClassRestrictedProduct
SetLike.coe
Filter.cofinite
DFunLike.coe
instDFunLike
mulSingle
Pi.mulSingle
β€”β€”
comp_single πŸ“–mathematicalZeroMemClassRestrictedProduct
SetLike.coe
Filter.cofinite
DFunLike.coe
instDFunLike
single
Pi.single
β€”β€”
div_apply πŸ“–mathematicalSubgroupClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instDivCoeOfSubgroupClass
DivInvMonoid.toDiv
β€”β€”
evalMonoidHom_apply πŸ“–mathematicalSubmonoidClass
Monoid.toMulOneClass
DFunLike.coe
MonoidHom
RestrictedProduct
SetLike.coe
MulOneClass.toMulOne
instMonoidCoeOfSubmonoidClass
MonoidHom.instFunLike
evalMonoidHom
instDFunLike
β€”β€”
evalRingHom_apply πŸ“–mathematicalSubringClassDFunLike.coe
RingHom
RestrictedProduct
SetLike.coe
Semiring.toNonAssocSemiring
Ring.toSemiring
instRingCoeOfSubringClass
RingHom.instFunLike
evalRingHom
instDFunLike
β€”β€”
eventually πŸ“–mathematicalβ€”Filter.Eventually
Set
Set.instMembership
DFunLike.coe
RestrictedProduct
instDFunLike
β€”β€”
exists_inclusion_eq_of_eventually πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.Eventually
Set
Set.instMembership
DFunLike.coe
RestrictedProduct
instDFunLike
inclusionβ€”β€”
exists_structureMap_eq_of_forall πŸ“–mathematicalSet
Set.instMembership
Filter.Eventually
structureMapβ€”β€”
ext πŸ“–β€”DFunLike.coe
RestrictedProduct
instDFunLike
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
RestrictedProduct
instDFunLike
β€”ext
image_coe_preimage_inclusion_subset πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Set
Set.instHasSubset
Set.image
RestrictedProduct
DFunLike.coe
instDFunLike
Set.preimage
inclusion
β€”β€”
inclusion_apply πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
DFunLike.coe
RestrictedProduct
instDFunLike
inclusion
β€”β€”
inclusion_eq_id πŸ“–mathematicalβ€”inclusion
le_refl
Filter
PartialOrder.toPreorder
Filter.instPartialOrder
RestrictedProduct
β€”le_refl
inv_apply πŸ“–mathematicalInvMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instInvCoeOfInvMemClass
β€”β€”
mapAlongAddMonoidHom_apply πŸ“–mathematicalFilter.Tendsto
AddSubmonoidClass
AddMonoid.toAddZeroClass
Filter.Eventually
Set.MapsTo
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoidHom.instFunLike
SetLike.coe
RestrictedProduct
instDFunLike
instAddMonoidCoeOfAddSubmonoidClass
mapAlongAddMonoidHom
β€”β€”
mapAlongMonoidHom_apply πŸ“–mathematicalFilter.Tendsto
SubmonoidClass
Monoid.toMulOneClass
Filter.Eventually
Set.MapsTo
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
SetLike.coe
RestrictedProduct
instDFunLike
instMonoidCoeOfSubmonoidClass
mapAlongMonoidHom
β€”β€”
mapAlongRingHom_apply πŸ“–mathematicalFilter.Tendsto
SubringClass
Filter.Eventually
Set.MapsTo
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
SetLike.coe
RestrictedProduct
instDFunLike
instRingCoeOfSubringClass
mapAlongRingHom
β€”β€”
mapAlong_apply πŸ“–mathematicalFilter.Tendsto
Filter.Eventually
Set.MapsTo
DFunLike.coe
RestrictedProduct
instDFunLike
mapAlong
β€”β€”
map_apply πŸ“–mathematicalFilter.Eventually
Set.MapsTo
DFunLike.coe
RestrictedProduct
instDFunLike
map
β€”β€”
mk_apply πŸ“–mathematicalFilter.Eventually
Set
Set.instMembership
DFunLike.coe
RestrictedProduct
instDFunLike
β€”β€”
mulSingle_div πŸ“–mathematicalSubgroupClass
Group.toDivInvMonoid
mulSingle
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
SubmonoidClass.toOneMemClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
SubgroupClass.toSubmonoidClass
DivInvMonoid.toDiv
RestrictedProduct
SetLike.coe
Filter.cofinite
instDivCoeOfSubgroupClass
β€”ext
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Pi.mulSingle_div
mulSingle_eq_of_ne πŸ“–mathematicalOneMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
Filter.cofinite
instDFunLike
mulSingle
β€”Pi.mulSingle_eq_of_ne
mulSingle_eq_of_ne' πŸ“–mathematicalOneMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
Filter.cofinite
instDFunLike
mulSingle
β€”Pi.mulSingle_eq_of_ne'
mulSingle_eq_one_iff πŸ“–mathematicalOneMemClassmulSingle
RestrictedProduct
SetLike.coe
Filter.cofinite
instOneCoeOfOneMemClass
β€”Pi.mulSingle_eq_one_iff
mulSingle_inj πŸ“–mathematicalOneMemClassmulSingleβ€”mulSingle_injective
mulSingle_injective πŸ“–mathematicalOneMemClassRestrictedProduct
SetLike.coe
Filter.cofinite
mulSingle
β€”Function.Injective.of_comp
Pi.mulSingle_injective
comp_mulSingle
mulSingle_inv πŸ“–mathematicalSubgroupClass
Group.toDivInvMonoid
mulSingle
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
SubmonoidClass.toOneMemClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
SubgroupClass.toSubmonoidClass
InvOneClass.toInv
RestrictedProduct
SetLike.coe
Filter.cofinite
instInvCoeOfInvMemClass
SubgroupClass.toInvMemClass
β€”ext
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
SubgroupClass.toInvMemClass
Pi.mulSingle_inv
mulSingle_mul πŸ“–mathematicalOneMemClass
MulOne.toOne
MulOneClass.toMulOne
MulMemClass
MulOne.toMul
mulSingle
RestrictedProduct
SetLike.coe
Filter.cofinite
instMulCoeOfMulMemClass
β€”ext
Pi.mulSingle_mul
mulSingle_ne_one_iff πŸ“–β€”OneMemClassβ€”β€”Subtype.coe_ne_coe
Pi.mulSingle_ne_one_iff
mulSingle_one πŸ“–mathematicalOneMemClassmulSingle
RestrictedProduct
SetLike.coe
Filter.cofinite
instOneCoeOfOneMemClass
β€”ext
Pi.mulSingle_one
mulSingle_pow πŸ“–mathematicalSubmonoidClass
Monoid.toMulOneClass
mulSingle
MulOne.toOne
MulOneClass.toMulOne
SubmonoidClass.toOneMemClass
Monoid.toNatPow
RestrictedProduct
SetLike.coe
Filter.cofinite
instPowCoeNatOfSubmonoidClass
β€”ext
SubmonoidClass.toOneMemClass
Pi.mulSingle_pow
mulSingle_zpow πŸ“–mathematicalSubgroupClass
Group.toDivInvMonoid
mulSingle
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
SubmonoidClass.toOneMemClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
SubgroupClass.toSubmonoidClass
DivInvMonoid.toZPow
RestrictedProduct
SetLike.coe
Filter.cofinite
instPowCoeIntOfSubgroupClass
β€”ext
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Pi.mulSingle_zpow
mul_apply πŸ“–mathematicalMulMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instMulCoeOfMulMemClass
β€”β€”
mul_single πŸ“–mathematicalZeroMemClass
MulZeroClass.toZero
MulMemClass
MulZeroClass.toMul
single
DFunLike.coe
RestrictedProduct
SetLike.coe
Filter.cofinite
instDFunLike
instMulCoeOfMulMemClass
β€”ext
eq_or_ne
Pi.single_eq_same
single_eq_of_ne'
MulZeroClass.mul_zero
neg_apply πŸ“–mathematicalNegMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instNegCoeOfNegMemClass
β€”β€”
nsmul_apply πŸ“–mathematicalAddSubmonoidClass
AddMonoid.toAddZeroClass
DFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instNSMul
AddMonoid.toNatSMul
β€”β€”
one_apply πŸ“–mathematicalOneMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instOneCoeOfOneMemClass
β€”β€”
pow_apply πŸ“–mathematicalSubmonoidClass
Monoid.toMulOneClass
DFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instPowCoeNatOfSubmonoidClass
Monoid.toNatPow
β€”β€”
range_coe πŸ“–mathematicalβ€”Set.range
RestrictedProduct
DFunLike.coe
instDFunLike
setOf
Filter.Eventually
Set
Set.instMembership
β€”Subtype.range_val_subtype
range_coe_principal πŸ“–mathematicalβ€”Set.range
RestrictedProduct
Filter.principal
DFunLike.coe
instDFunLike
Set.pi
β€”range_coe
range_inclusion πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Set.range
RestrictedProduct
inclusion
setOf
Filter.Eventually
Set
Set.instMembership
DFunLike.coe
instDFunLike
β€”subset_antisymm
Set.instAntisymmSubset
Set.range_subset_iff
Set.mem_range
exists_inclusion_eq_of_eventually
range_structureMap πŸ“–mathematicalβ€”Set.range
RestrictedProduct
structureMap
setOf
β€”subset_antisymm
Set.instAntisymmSubset
Set.range_subset_iff
Set.mem_range
exists_structureMap_eq_of_forall
single_add πŸ“–mathematicalZeroMemClass
AddZero.toZero
AddZeroClass.toAddZero
AddMemClass
AddZero.toAdd
single
RestrictedProduct
SetLike.coe
Filter.cofinite
instAddCoeOfAddMemClass
β€”ext
Pi.single_add
single_eq_of_ne πŸ“–mathematicalZeroMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
Filter.cofinite
instDFunLike
single
β€”Pi.single_eq_of_ne
single_eq_of_ne' πŸ“–mathematicalZeroMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
Filter.cofinite
instDFunLike
single
β€”Pi.single_eq_of_ne'
single_eq_zero_iff πŸ“–mathematicalZeroMemClasssingle
RestrictedProduct
SetLike.coe
Filter.cofinite
instZeroCoeOfZeroMemClass
β€”Pi.single_eq_zero_iff
single_inj πŸ“–mathematicalZeroMemClasssingleβ€”single_injective
single_injective πŸ“–mathematicalZeroMemClassRestrictedProduct
SetLike.coe
Filter.cofinite
single
β€”Function.Injective.of_comp
Pi.single_injective
comp_single
single_mul πŸ“–mathematicalZeroMemClass
MulZeroClass.toZero
MulMemClass
MulZeroClass.toMul
single
DFunLike.coe
RestrictedProduct
SetLike.coe
Filter.cofinite
instDFunLike
instMulCoeOfMulMemClass
β€”ext
eq_or_ne
Pi.single_eq_same
single_eq_of_ne'
MulZeroClass.zero_mul
single_ne_zero_iff πŸ“–β€”ZeroMemClassβ€”β€”Subtype.coe_ne_coe
Pi.single_ne_zero_iff
single_neg πŸ“–mathematicalAddSubgroupClass
AddGroup.toSubNegMonoid
single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddSubgroupClass.toAddSubmonoidClass
NegZeroClass.toNeg
RestrictedProduct
SetLike.coe
Filter.cofinite
instNegCoeOfNegMemClass
AddSubgroupClass.toNegMemClass
β€”ext
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
AddSubgroupClass.toNegMemClass
Pi.single_neg
single_nsmul πŸ“–mathematicalAddSubmonoidClass
AddMonoid.toAddZeroClass
single
AddZero.toZero
AddZeroClass.toAddZero
AddSubmonoidClass.toZeroMemClass
AddMonoid.toNatSMul
RestrictedProduct
SetLike.coe
Filter.cofinite
instNSMul
β€”ext
AddSubmonoidClass.toZeroMemClass
Pi.single_nsmul
single_sub πŸ“–mathematicalAddSubgroupClass
AddGroup.toSubNegMonoid
single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddSubgroupClass.toAddSubmonoidClass
SubNegMonoid.toSub
RestrictedProduct
SetLike.coe
Filter.cofinite
instSubCoeOfAddSubgroupClass
β€”ext
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
Pi.single_sub
single_zero πŸ“–mathematicalZeroMemClasssingle
RestrictedProduct
SetLike.coe
Filter.cofinite
instZeroCoeOfZeroMemClass
β€”ext
Pi.single_zero
single_zsmul πŸ“–mathematicalAddSubgroupClass
AddGroup.toSubNegMonoid
single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddSubgroupClass.toAddSubmonoidClass
SubNegMonoid.toZSMul
RestrictedProduct
SetLike.coe
Filter.cofinite
instZSMul
β€”ext
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
Pi.single_zsmul
smul_apply πŸ“–mathematicalSMulMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instSMulCoeOfSMulMemClass
β€”β€”
structureMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RestrictedProduct
instDFunLike
structureMap
Set
Set.instMembership
β€”β€”
sub_apply πŸ“–mathematicalAddSubgroupClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instSubCoeOfAddSubgroupClass
SubNegMonoid.toSub
β€”β€”
vadd_apply πŸ“–mathematicalVAddMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
HVAdd.hVAdd
instHVAdd
instVAddCoeOfVAddMemClass
β€”β€”
zero_apply πŸ“–mathematicalZeroMemClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instZeroCoeOfZeroMemClass
β€”β€”
zpow_apply πŸ“–mathematicalSubgroupClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instPowCoeIntOfSubgroupClass
DivInvMonoid.toZPow
β€”β€”
zsmul_apply πŸ“–mathematicalAddSubgroupClassDFunLike.coe
RestrictedProduct
SetLike.coe
instDFunLike
instZSMul
SubNegMonoid.toZSMul
β€”β€”

(root)

Definitions

NameCategoryTheorems
RestrictedProduct πŸ“–CompOp
122 mathmath: RestrictedProduct.single_injective, RestrictedProduct.mulSingle_inv, RestrictedProduct.image_coe_preimage_inclusion_subset, RestrictedProduct.continuous_rng_of_principal, RestrictedProduct.instContinuousMulCoePrincipal, RestrictedProduct.one_apply, RestrictedProduct.continuous_coe, RestrictedProduct.mulSingle_zpow, RestrictedProduct.single_eq_zero_iff, RestrictedProduct.sub_apply, RestrictedProduct.single_mul, RestrictedProduct.instLocallyCompactSpaceCoeCofiniteOfSubgroupClassOfIsTopologicalGroupOfCompactSpaceSubtypeMem, RestrictedProduct.inclusion_apply, RestrictedProduct.coe_comp_structureMap, RestrictedProduct.nhds_zero_eq_map_ofPre, RestrictedProduct.isOpen_forall_mem_of_principal, RestrictedProduct.isOpenEmbedding_structureMap, RestrictedProduct.mapAlong_apply, RestrictedProduct.zsmul_apply, RestrictedProduct.instIsTopologicalRingCoePrincipal, RestrictedProduct.instContinuousAddCoePrincipal, RestrictedProduct.mul_single, RestrictedProduct.mulSingle_injective, RestrictedProduct.isOpen_forall_imp_mem, RestrictedProduct.instWeaklyLocallyCompactSpaceCofiniteOfFactForallIsOpenOfCompactSpaceElem, RestrictedProduct.instIsTopologicalAddGroupCoePrincipal, RestrictedProduct.smul_apply, RestrictedProduct.nsmul_apply, RestrictedProduct.continuous_dom, RestrictedProduct.continuous_dom_prod, RestrictedProduct.isOpen_forall_mem, RestrictedProduct.mulSingle_eq_of_ne', RestrictedProduct.continuous_rng_of_top, RestrictedProduct.inclusion_eq_id, RestrictedProduct.ext_iff, RestrictedProduct.instWeaklyLocallyCompactSpacePrincipalOfFactLeFilterCofiniteOfCompactSpaceElem, RestrictedProduct.coe_single_apply, RestrictedProduct.single_zero, RestrictedProduct.locallyCompactSpace_of_group, RestrictedProduct.comp_single, RestrictedProduct.isEmbedding_coe_of_principal, RestrictedProduct.single_add, RestrictedProduct.instIsTopologicalGroupCoePrincipal, RestrictedProduct.evalRingHom_apply, RestrictedProduct.single_sub, RestrictedProduct.instContinuousNegCoe, RestrictedProduct.mulSingle_mul, RestrictedProduct.mapAlongRingHom_apply, RestrictedProduct.nhds_eq_map_structureMap, RestrictedProduct.topologicalSpace_eq_of_principal, RestrictedProduct.weaklyLocallyCompactSpace_of_principal, RestrictedProduct.vadd_apply, RestrictedProduct.inv_apply, RestrictedProduct.isTopologicalRing, RestrictedProduct.continuous_inclusion, RestrictedProduct.isEmbedding_inclusion_top, RestrictedProduct.range_coe_principal, RestrictedProduct.instContinuousConstSMulCoe, RestrictedProduct.instContinuousMulCoeCofinite, RestrictedProduct.continuous_rng_of_principal_iff_forall, RestrictedProduct.instContinuousConstVAddCoe, RestrictedProduct.range_coe, RestrictedProduct.eventually, RestrictedProduct.instContinuousSMulCoePrincipal, RestrictedProduct.structureMap_apply, RestrictedProduct.comp_mulSingle, RestrictedProduct.coe_mulSingle_apply, RestrictedProduct.continuous_dom_pi, RestrictedProduct.single_eq_of_ne, RestrictedProduct.mapAlong_continuous, RestrictedProduct.mulSingle_one, RestrictedProduct.zero_apply, RestrictedProduct.range_inclusion, RestrictedProduct.instT2Space, RestrictedProduct.instLocallyCompactSpaceCoeCofiniteOfAddSubgroupClassOfIsTopologicalAddGroupOfCompactSpaceSubtypeMem, RestrictedProduct.single_nsmul, RestrictedProduct.continuous_dom_prod_right, RestrictedProduct.neg_apply, RestrictedProduct.instContinuousAddCoeCofinite, RestrictedProduct.isEmbedding_coe_of_top, RestrictedProduct.instT0Space, RestrictedProduct.mulSingle_pow, RestrictedProduct.coe_comp_inclusion, RestrictedProduct.single_zsmul, RestrictedProduct.continuous_eval, RestrictedProduct.topologicalSpace_eq_of_bot, RestrictedProduct.single_neg, RestrictedProduct.continuousSMul, RestrictedProduct.mapAlongAddMonoidHom_apply, RestrictedProduct.locallyCompactSpace_of_addGroup, RestrictedProduct.evalMonoidHom_apply, RestrictedProduct.weaklyLocallyCompactSpace_of_cofinite, RestrictedProduct.mk_apply, RestrictedProduct.isEmbedding_inclusion_principal, RestrictedProduct.isEmbedding_coe_of_bot, RestrictedProduct.zpow_apply, RestrictedProduct.topologicalSpace_eq_iSup, RestrictedProduct.nhds_zero_eq_map_structureMap, RestrictedProduct.add_apply, RestrictedProduct.topologicalSpace_eq_of_top, RestrictedProduct.div_apply, RestrictedProduct.continuousVAdd, RestrictedProduct.isTopologicalGroup, RestrictedProduct.instContinuousInvCoe, RestrictedProduct.map_apply, RestrictedProduct.instContinuousVAddCoePrincipal, RestrictedProduct.mapAlongMonoidHom_apply, RestrictedProduct.single_eq_of_ne', RestrictedProduct.mulSingle_div, RestrictedProduct.continuous_rng_of_bot, RestrictedProduct.continuous_dom_prod_left, RestrictedProduct.isTopologicalAddGroup, RestrictedProduct.mulSingle_eq_of_ne, RestrictedProduct.isOpen_forall_imp_mem_of_principal, RestrictedProduct.pow_apply, RestrictedProduct.mul_apply, RestrictedProduct.isOpenEmbedding_inclusion_principal, RestrictedProduct.instT1Space, RestrictedProduct.nhds_eq_map_inclusion, RestrictedProduct.isEmbedding_structureMap, RestrictedProduct.range_structureMap, RestrictedProduct.mulSingle_eq_one_iff

---

← Back to Index