π Source: Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
homeoBot
homeoTop
topologicalSpace
TopologicalSpace
continuousSMul
continuousVAdd
continuous_coe
continuous_dom
continuous_dom_pi
continuous_dom_prod
continuous_dom_prod_left
continuous_dom_prod_right
continuous_eval
continuous_inclusion
continuous_rng_of_bot
continuous_rng_of_principal
continuous_rng_of_principal_iff_forall
continuous_rng_of_top
instContinuousAddCoeCofinite
instContinuousAddCoePrincipal
instContinuousConstSMulCoe
instContinuousConstVAddCoe
instContinuousInvCoe
instContinuousMulCoeCofinite
instContinuousMulCoePrincipal
instContinuousNegCoe
instContinuousSMulCoePrincipal
instContinuousVAddCoePrincipal
instIsTopologicalAddGroupCoePrincipal
instIsTopologicalGroupCoePrincipal
instIsTopologicalRingCoePrincipal
instLocallyCompactSpaceCoeCofiniteOfAddSubgroupClassOfIsTopologicalAddGroupOfCompactSpaceSubtypeMem
instLocallyCompactSpaceCoeCofiniteOfSubgroupClassOfIsTopologicalGroupOfCompactSpaceSubtypeMem
instT0Space
instT1Space
instT2Space
instWeaklyLocallyCompactSpaceCofiniteOfFactForallIsOpenOfCompactSpaceElem
instWeaklyLocallyCompactSpacePrincipalOfFactLeFilterCofiniteOfCompactSpaceElem
isEmbedding_coe_of_bot
isEmbedding_coe_of_principal
isEmbedding_coe_of_top
isEmbedding_inclusion_principal
isEmbedding_inclusion_top
isEmbedding_structureMap
isOpenEmbedding_inclusion_principal
isOpenEmbedding_structureMap
isOpen_forall_imp_mem
isOpen_forall_imp_mem_of_principal
isOpen_forall_mem
isOpen_forall_mem_of_principal
isTopologicalAddGroup
isTopologicalGroup
isTopologicalRing
locallyCompactSpace_of_addGroup
locallyCompactSpace_of_group
mapAlong_continuous
nhds_eq_map_inclusion
nhds_eq_map_structureMap
nhds_zero_eq_map_ofPre
nhds_zero_eq_map_structureMap
topologicalSpace_eq_iSup
topologicalSpace_eq_of_bot
topologicalSpace_eq_of_principal
topologicalSpace_eq_of_top
weaklyLocallyCompactSpace_of_cofinite
weaklyLocallyCompactSpace_of_principal
SMulMemClass
ContinuousSMul
RestrictedProduct
SetLike.coe
Filter.cofinite
instSMulCoeOfSMulMemClass
Fact.out
Continuous.comp
ContinuousSMul.continuous_smul
VAddMemClass
ContinuousVAdd
instVAddCoeOfVAddMemClass
ContinuousVAdd.continuous_vadd
Continuous
Pi.topologicalSpace
DFunLike.coe
instDFunLike
continuous_iSup_dom
continuous_coinduced_dom
continuous_induced_dom
Filter.principal
inclusion
IsOpen
Pi.map
Continuous.comp'
Continuous.piMap
Filter.le_principal_iff
nhds_pi
Continuous.tendsto
instTopologicalSpaceProd
le_inf
Filter.inf_principal
Filter.principal_mono
Set.inter_subset_left
Set.inter_subset_right
Continuous.prodMap
continuous_id
exists_inclusion_eq_of_eventually
nhds_prod_eq
Filter.map_id
Filter.prod_map_map_eq
Filter.tendsto_map'_iff
continuous_apply
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
coinduced_iSup
iSup_congr_Prop
coinduced_compose
iSupβ_le
le_iSupβ_of_le
le_trans
le_rfl
Bot.bot
Filter.instBot
Topology.IsEmbedding.continuous_iff
continuous_pi_iff
Top.top
Filter.instTop
AddMemClass
ContinuousAdd
instAddCoeOfAddMemClass
continuous_add
Topology.IsInducing.continuousAdd
AddHom.addHomClass
Pi.continuousAdd
Topology.IsEmbedding.toIsInducing
ContinuousConstSMul
ContinuousConstSMul.continuous_const_smul
Topology.IsInducing.continuousConstSMul
instContinuousConstSMulForall
ContinuousConstVAdd
ContinuousConstVAdd.continuous_const_vadd
Topology.IsInducing.continuousConstVAdd
instContinuousConstVAddForall
InvMemClass
ContinuousInv
instInvCoeOfInvMemClass
ContinuousInv.continuous_inv
Topology.IsInducing.continuousInv
Pi.continuousInv
MulMemClass
ContinuousMul
instMulCoeOfMulMemClass
continuous_mul
Topology.IsInducing.continuousMul
MulHom.mulHomClass
Pi.continuousMul
NegMemClass
ContinuousNeg
instNegCoeOfNegMemClass
ContinuousNeg.continuous_neg
Topology.IsInducing.continuousNeg
Pi.continuousNeg
Topology.IsInducing.continuousSMul
instContinuousSMulForall
Topology.IsInducing.continuousVAdd
instContinuousVAddForall
AddSubgroupClass
AddGroup.toSubNegMonoid
IsTopologicalAddGroup
instAddGroupCoeOfAddSubgroupClass
IsTopologicalAddGroup.toContinuousAdd
IsTopologicalAddGroup.toContinuousNeg
SubgroupClass
Group.toDivInvMonoid
IsTopologicalGroup
instGroupCoeOfSubgroupClass
IsTopologicalGroup.toContinuousMul
IsTopologicalGroup.toContinuousInv
SubringClass
IsTopologicalRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
instRingCoeOfSubringClass
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toContinuousNeg
CompactSpace
SetLike.instMembership
instTopologicalSpaceSubtype
LocallyCompactSpace
WeaklyLocallyCompactSpace.locallyCompactSpace
instR1Space
IsTopologicalAddGroup.regularSpace
IsCompact.vadd
VAddAssocClass.continuousConstVAdd
VAddAssocClass.left
isCompact_iff_compactSpace
IsOpen.mem_nhds
IsOpen.vadd
add_zero
Set.vadd_mem_vadd_set
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
Filter.Eventually.of_forall
IsTopologicalGroup.regularSpace
IsCompact.smul
IsScalarTower.continuousConstSMul
IsScalarTower.left
IsOpen.smul
mul_one
Set.smul_mem_smul_set
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
T0Space
t0Space_of_injective_of_continuous
DFunLike.coe_injective
Pi.instT0Space
T1Space
t1Space_of_injective_of_continuous
instT1SpaceForall
T2Space
T2Space.of_injective_continuous
Pi.t2Space
WeaklyLocallyCompactSpace
Set.Elem
Set
Set.instMembership
Topology.IsEmbedding
Filter.principal_empty
Filter.principal_univ
Topology.IsEmbedding.of_comp
OrderTop.toTop
CoheytingAlgebra.toOrderTop
Order.Coframe.toCoheytingAlgebra
Filter.instCoframe
le_top
structureMap
Topology.IsEmbedding.comp
Homeomorph.isEmbedding
Topology.IsOpenEmbedding
range_inclusion
range_structureMap
setOf
Set.ext
IsOpen.preimage
isOpen_set_pi
Set.Finite.inter_of_left
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
Filter.Tendsto
Filter.Eventually
Set.MapsTo
mapAlong
Filter.inter_mem
continuous_pi
nhds
Filter.map
Topology.IsOpenEmbedding.map_nhds_eq
ZeroMemClass
instZeroCoeOfZeroMemClass
Pi.instZero
ZeroMemClass.zero
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
TopologicalSpace.coinduced
TopologicalSpace.induced
le_antisymm
continuous_iff_le_induced
le_refl
inclusion_eq_id
coinduced_id
Filter.Eventually.and
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
IsCompact.image
Filter.image_mem_map
IsCompact
isCompact_univ_pi
set_pi_mem_nhds
Filter.mem_cofinite
Topology.IsInducing.isCompact_preimage_iff
range_coe_principal
Set.pi_if
Filter.mem_of_superset
Topology.IsInducing.nhds_eq_comap
Filter.preimage_mem_comap
continuousNeg_iInf
Topology.lawson_le_scott
coinduced_bot
PolynormableSpace.sInf
continuous_sup_rng_right
GroupTopology.toTopologicalSpace_iInf
equicontinuousWithinAt_iInf_dom
continuousMul_inf
ContinuousMap.compactOpen_eq_iInf_induced
nhds_sInf
continuousMul_sInf
AddGroupTopology.toTopologicalSpace_inf
setOf_isOpen_iSup
isClosed_iSup_iff
topologicalGroup_iInf
le_nhdsAdjoint_iff
continuous_sup_dom
Topology.IsGeneratedBy.le_generatedBy
R1Space.iInf
TopologicalSpace.setOf_isOpen_injective
nhds_iInf
UCompactlyGeneratedSpace.le_compactlyGenerated
continuous_sSup_dom
isClosed_sSup_iff
MeasureTheory.LevyProkhorov.eq_convergenceInDistribution
induced_inf
inseparable_top
GroupTopology.toTopologicalSpace_inf
TopologicalSpace.eq_induced_by_maps_to_sierpinski
LocallyConvexSpace.inf
deltaGenerated_eq_coinduced
continuousVAdd_sInf
deltaGenerated_le
le_of_nhds_le_nhds
generateFrom_sUnion
continuous_inf_dom_leftβ
AddGroupTopology.toTopologicalSpace_injective
t2Space_antitone
induced_const
generateFrom_iUnion_isOpen
continuousAdd_inf
TopologicalSpace.eq_top_iff_forall_inseparable
continuous_inf_dom_rightβ
UniformSpace.toTopologicalSpace_top
generateFrom_union
isOpen_sup
AddGroupTopology.toTopologicalSpace_sInf
UniformConvergenceCLM.topologicalSpace_mono
TopCat.pullback_topology
generateFrom_iInter_of_generateFrom_eq_self
TopCat.colimit_topology
topologicalGroup_inf
Pi.induced_restrict
Measurable.exists_continuous
Topology.upperSet_le_scott
topologicalAddGroup_inf
induced_topology_pure
continuousNeg_sInf
continuousNeg_inf
TopCat.prod_topology
IndiscreteTopology.eq_top
regularSpace_sInf
topologicalAddGroup_sInf
TopologicalSpace.isOpen_top_iff
TopologicalSpace.IsTopologicalBasis.inf_induced
continuous_iInf_rng
TopologicalSpace.le_def
Topology.IsGeneratedBy.iff_le_generatedBy
continuous_bot
continuousInv_inf
TopologicalSpace.generateFrom_surjective
continuous_inf_dom_right
TopologicalSpace.generateFrom_anti
isOpen_sSup_iff
isDenseEmbedding_pure
induced_sInf
Topology.isLawson_le_isScott
le_nhdsAdjoint_iff'
TopCat.nonempty_isLimit_iff_eq_induced
SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf
SequentialSpace.iSup
continuousInv_sInf
RingTopology.toTopologicalSpace_injective
continuous_top
pullbackTopology_def
le_induced_generateFrom
TopologicalSpace.secondCountableTopology_iInf
AddGroupTopology.toTopologicalSpace_top
LocallyConvexSpace.iInf
Topology.IsGeneratedBy.sup
Topology.scottHausdorff_le_isLawson
t1Space_antitone
continuousSMul_sInf
DeltaGeneratedSpace.le_deltaGenerated
generateFrom_iUnion
PolynormableSpace.induced
coinduced_sSup
LinearMap.mem_span_iff_continuous_of_finite
nhds_top
Topology.scottHausdorff_le_lawson
UniformOnFun.topologicalSpace_eq
TopologicalSpace.IsTopologicalBasis.inf
GroupTopology.toTopologicalSpace_sInf
continuousAdd_iInf
regularSpace_iInf
R1Space.inf
equicontinuous_iInf_dom
UniformSpace.toTopologicalSpace_bot
CompHausLike.LocallyConstant.locallyConstantIsoContinuousMap_hom
generateFrom_iInter
alexandrovDiscrete_iSup
coinduced_le_iff_le_induced
RestrictedProduct.topologicalSpace_eq_of_principal
UniformSpace.toTopologicalSpace_sInf
GroupTopology.toTopologicalSpace_bot
PolynormableSpace.iInf
nhds_inf
TopCat.coinduced_of_isColimit
topologicalGroup_sInf
isOpen_iSup_iff
Topology.IsScott.scottHausdorff_le
ModuleTopology.eq_coinduced_of_surjectiveββ
Topology.scottHausdorff_le_scott
AlexandrovDiscrete.sup
AddGroupTopology.toTopologicalSpace_le
ModuleTopology.eq_coinduced_of_surjective
Pi.induced_precomp
UniformSpace.toTopologicalSpace_iInf
indiscreteTopology_iff
Topology.scottHausdorff_le_lower
continuousSMul_inf
continuousAdd_sInf
DeltaGeneratedSpace.sup
continuous_id_iff_le
LocallyConvexSpace.sInf
RegularSpace.inf
Units.topology_eq_inf
induced_topology_le_preorder
completelyRegularSpace_iInf
continuousSMul_iInf
IsTopologicalBasis.iInf
le_iff_nhds
Pi.induced_restrict_sUnion
discreteTopology_bot
equicontinuousAt_iInf_dom
completelyRegularSpace_inf
isDenseInducing_pure
Continuous.le_induced
continuous_iSup_rng
NormedSpace.Dual.dual_norm_topology_le_weak_dual_topology
TopologicalSpace.generatedBy_le
induced_to_pi
continuousMul_iInf
moduleTopology_le
TopCat.induced_of_isLimit
isOpen_implies_isOpen_iff
continuous_iInf_dom
TopologicalSpace.gc_generateFrom
continuousVAdd_inf
coinduced_sup
LinearOrder.bot_topologicalSpace_eq_generateFrom
inducing_iInf_to_pi
TopCat.nonempty_isColimit_iff_eq_coinduced
DiscreteTopology.eq_bot
GroupTopology.toTopologicalSpace_le
equicontinuousOn_iInf_dom
gc_nhds
generateFrom_union_isOpen
RestrictedProduct.topologicalSpace_eq_of_bot
UniformSpace.toTopologicalSpace_inf
eq_bot_of_singletons_open
Topology.IsUpperSet.upperSet_le_upper
MeasureTheory.LevyProkhorov.le_convergenceInDistribution
Pi.induced_precomp'
continuous_iff_coinduced_le
continuousInv_iInf
MeasureTheory.levyProkhorov_le_convergenceInDistribution
Topology.lawson_le_lower
borel_anti
RestrictedProduct.topologicalSpace_eq_iSup
withSeminorms_iInf
ContinuousMap.compactOpen_le_induced
continuous_sup_rng_left
induced_top
UniformSpace.toTopologicalSpace_mono
setOf_isOpen_sSup
Topology.IsLower.scottHausdorff_le
continuous_inf_rng
RestrictedProduct.topologicalSpace_eq_of_top
GroupTopology.toTopologicalSpace_top
AddGroupTopology.toTopologicalSpace_iInf
Topology.IsGeneratedBy.iSup
induced_iInf
TopCat.limit_topology
generateFrom_inter
TestFunction.topologicalSpace_le_iff
R1Space.sInf
PolynormableSpace.inf
TopologicalSpace.leftInverse_generateFrom
SequentialSpace.sup
instIndiscreteTopology
LinearMap.mem_span_iff_continuous
AddUnits.topology_eq_inf
topologicalAddGroup_iInf
Topology.IsLowerSet.lowerSet_le_lower
DeltaGeneratedSpace.iSup
gc_coinduced_induced
continuous_inf_dom_left
GroupTopology.toTopologicalSpace_injective
continuous_sInf_rng
TopologicalSpace.le_generateFrom_iff_subset_isOpen
le_generateFrom
TopologicalSpace.Opens.IsBasis.le_iff
TestFunction.originalTop_le
Continuous.coinduced_le
continuousVAdd_iInf
IsTopologicalBasis.iInf_induced
LinearMap.withSeminorms_induced
AddGroupTopology.toTopologicalSpace_bot
setOf_isOpen_sup
MeasureTheory.levyProkhorov_eq_convergenceInDistribution
---
β Back to Index