Documentation Verification Report

TopologicalSpace

πŸ“ Source: Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean

Statistics

MetricCount
DefinitionshomeoBot, homeoTop, topologicalSpace, TopologicalSpace
4
TheoremscontinuousSMul, continuousVAdd, continuous_coe, continuous_dom, continuous_dom_pi, continuous_dom_prod, continuous_dom_prod_left, continuous_dom_prod_right, continuous_eval, continuous_inclusion, continuous_rng_of_bot, continuous_rng_of_principal, continuous_rng_of_principal_iff_forall, continuous_rng_of_top, instContinuousAddCoeCofinite, instContinuousAddCoePrincipal, instContinuousConstSMulCoe, instContinuousConstVAddCoe, instContinuousInvCoe, instContinuousMulCoeCofinite, instContinuousMulCoePrincipal, instContinuousNegCoe, instContinuousSMulCoePrincipal, instContinuousVAddCoePrincipal, instIsTopologicalAddGroupCoePrincipal, instIsTopologicalGroupCoePrincipal, instIsTopologicalRingCoePrincipal, instLocallyCompactSpaceCoeCofiniteOfAddSubgroupClassOfIsTopologicalAddGroupOfCompactSpaceSubtypeMem, instLocallyCompactSpaceCoeCofiniteOfSubgroupClassOfIsTopologicalGroupOfCompactSpaceSubtypeMem, instT0Space, instT1Space, instT2Space, instWeaklyLocallyCompactSpaceCofiniteOfFactForallIsOpenOfCompactSpaceElem, instWeaklyLocallyCompactSpacePrincipalOfFactLeFilterCofiniteOfCompactSpaceElem, isEmbedding_coe_of_bot, isEmbedding_coe_of_principal, isEmbedding_coe_of_top, isEmbedding_inclusion_principal, isEmbedding_inclusion_top, isEmbedding_structureMap, isOpenEmbedding_inclusion_principal, isOpenEmbedding_structureMap, isOpen_forall_imp_mem, isOpen_forall_imp_mem_of_principal, isOpen_forall_mem, isOpen_forall_mem_of_principal, isTopologicalAddGroup, isTopologicalGroup, isTopologicalRing, locallyCompactSpace_of_addGroup, locallyCompactSpace_of_group, mapAlong_continuous, nhds_eq_map_inclusion, nhds_eq_map_structureMap, nhds_zero_eq_map_ofPre, nhds_zero_eq_map_structureMap, topologicalSpace_eq_iSup, topologicalSpace_eq_of_bot, topologicalSpace_eq_of_principal, topologicalSpace_eq_of_top, weaklyLocallyCompactSpace_of_cofinite, weaklyLocallyCompactSpace_of_principal
62
Total66

RestrictedProduct

Definitions

NameCategoryTheorems
homeoBot πŸ“–CompOpβ€”
homeoTop πŸ“–CompOpβ€”
topologicalSpace πŸ“–CompOp
62 mathmath: continuous_rng_of_principal, instContinuousMulCoePrincipal, continuous_coe, instLocallyCompactSpaceCoeCofiniteOfSubgroupClassOfIsTopologicalGroupOfCompactSpaceSubtypeMem, nhds_zero_eq_map_ofPre, isOpen_forall_mem_of_principal, isOpenEmbedding_structureMap, instIsTopologicalRingCoePrincipal, instContinuousAddCoePrincipal, isOpen_forall_imp_mem, instWeaklyLocallyCompactSpaceCofiniteOfFactForallIsOpenOfCompactSpaceElem, instIsTopologicalAddGroupCoePrincipal, continuous_dom, continuous_dom_prod, isOpen_forall_mem, continuous_rng_of_top, instWeaklyLocallyCompactSpacePrincipalOfFactLeFilterCofiniteOfCompactSpaceElem, locallyCompactSpace_of_group, isEmbedding_coe_of_principal, instIsTopologicalGroupCoePrincipal, instContinuousNegCoe, nhds_eq_map_structureMap, topologicalSpace_eq_of_principal, weaklyLocallyCompactSpace_of_principal, isTopologicalRing, continuous_inclusion, isEmbedding_inclusion_top, instContinuousConstSMulCoe, instContinuousMulCoeCofinite, continuous_rng_of_principal_iff_forall, instContinuousConstVAddCoe, instContinuousSMulCoePrincipal, continuous_dom_pi, mapAlong_continuous, instT2Space, instLocallyCompactSpaceCoeCofiniteOfAddSubgroupClassOfIsTopologicalAddGroupOfCompactSpaceSubtypeMem, continuous_dom_prod_right, instContinuousAddCoeCofinite, isEmbedding_coe_of_top, instT0Space, continuous_eval, topologicalSpace_eq_of_bot, continuousSMul, locallyCompactSpace_of_addGroup, weaklyLocallyCompactSpace_of_cofinite, isEmbedding_inclusion_principal, isEmbedding_coe_of_bot, topologicalSpace_eq_iSup, nhds_zero_eq_map_structureMap, topologicalSpace_eq_of_top, continuousVAdd, isTopologicalGroup, instContinuousInvCoe, instContinuousVAddCoePrincipal, continuous_rng_of_bot, continuous_dom_prod_left, isTopologicalAddGroup, isOpen_forall_imp_mem_of_principal, isOpenEmbedding_inclusion_principal, instT1Space, nhds_eq_map_inclusion, isEmbedding_structureMap

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalSMulMemClass
ContinuousSMul
RestrictedProduct
SetLike.coe
Filter.cofinite
instSMulCoeOfSMulMemClass
topologicalSpace
β€”continuous_dom_prod_left
Fact.out
Continuous.comp
continuous_inclusion
ContinuousSMul.continuous_smul
instContinuousSMulCoePrincipal
continuousVAdd πŸ“–mathematicalVAddMemClass
ContinuousVAdd
RestrictedProduct
SetLike.coe
Filter.cofinite
instVAddCoeOfVAddMemClass
topologicalSpace
β€”continuous_dom_prod_left
Fact.out
Continuous.comp
continuous_inclusion
ContinuousVAdd.continuous_vadd
instContinuousVAddCoePrincipal
continuous_coe πŸ“–mathematicalβ€”Continuous
RestrictedProduct
topologicalSpace
Pi.topologicalSpace
DFunLike.coe
instDFunLike
β€”continuous_iSup_dom
continuous_coinduced_dom
continuous_induced_dom
continuous_dom πŸ“–mathematicalβ€”Continuous
RestrictedProduct
topologicalSpace
Filter.principal
inclusion
β€”topologicalSpace_eq_of_principal
continuous_dom_pi πŸ“–mathematicalIsOpenContinuous
Pi.topologicalSpace
RestrictedProduct
Filter.cofinite
topologicalSpace
Filter.principal
Pi.map
inclusion
β€”Continuous.comp'
Continuous.piMap
continuous_inclusion
Filter.le_principal_iff
nhds_pi
nhds_eq_map_inclusion
Continuous.tendsto
continuous_dom_prod πŸ“–mathematicalIsOpenContinuous
RestrictedProduct
Filter.cofinite
instTopologicalSpaceProd
topologicalSpace
Filter.principal
inclusion
β€”continuous_dom_prod_right
continuous_dom_prod_left
le_inf
Filter.inf_principal
Filter.principal_mono
Set.inter_subset_left
Set.inter_subset_right
Continuous.comp
Continuous.prodMap
continuous_inclusion
continuous_dom_prod_left πŸ“–mathematicalIsOpenContinuous
RestrictedProduct
Filter.cofinite
instTopologicalSpaceProd
topologicalSpace
Filter.principal
inclusion
β€”Continuous.comp
Continuous.prodMap
continuous_id
continuous_inclusion
Filter.le_principal_iff
exists_inclusion_eq_of_eventually
nhds_prod_eq
nhds_eq_map_inclusion
Filter.map_id
Filter.prod_map_map_eq
Filter.tendsto_map'_iff
Continuous.tendsto
continuous_dom_prod_right πŸ“–mathematicalIsOpenContinuous
RestrictedProduct
Filter.cofinite
instTopologicalSpaceProd
topologicalSpace
Filter.principal
inclusion
β€”Continuous.comp
Continuous.prodMap
continuous_inclusion
continuous_id
Filter.le_principal_iff
exists_inclusion_eq_of_eventually
nhds_prod_eq
nhds_eq_map_inclusion
Filter.map_id
Filter.prod_map_map_eq
Filter.tendsto_map'_iff
Continuous.tendsto
continuous_eval πŸ“–mathematicalβ€”Continuous
RestrictedProduct
topologicalSpace
DFunLike.coe
instDFunLike
β€”Continuous.comp
continuous_apply
continuous_coe
continuous_inclusion πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Continuous
RestrictedProduct
topologicalSpace
inclusion
β€”coinduced_iSup
iSup_congr_Prop
coinduced_compose
iSupβ‚‚_le
le_iSupβ‚‚_of_le
le_trans
le_rfl
continuous_rng_of_bot πŸ“–mathematicalβ€”Continuous
RestrictedProduct
Bot.bot
Filter
Filter.instBot
topologicalSpace
Pi.topologicalSpace
DFunLike.coe
instDFunLike
β€”Topology.IsEmbedding.continuous_iff
isEmbedding_coe_of_bot
continuous_rng_of_principal πŸ“–mathematicalβ€”Continuous
RestrictedProduct
Filter.principal
topologicalSpace
Pi.topologicalSpace
DFunLike.coe
instDFunLike
β€”Topology.IsEmbedding.continuous_iff
isEmbedding_coe_of_principal
continuous_rng_of_principal_iff_forall πŸ“–mathematicalβ€”Continuous
RestrictedProduct
Filter.principal
topologicalSpace
DFunLike.coe
instDFunLike
β€”continuous_rng_of_principal
continuous_pi_iff
continuous_rng_of_top πŸ“–mathematicalβ€”Continuous
RestrictedProduct
Top.top
Filter
Filter.instTop
topologicalSpace
Pi.topologicalSpace
DFunLike.coe
instDFunLike
β€”Topology.IsEmbedding.continuous_iff
isEmbedding_coe_of_top
instContinuousAddCoeCofinite πŸ“–mathematicalAddMemClass
ContinuousAdd
RestrictedProduct
SetLike.coe
Filter.cofinite
topologicalSpace
instAddCoeOfAddMemClass
β€”continuous_dom_prod
Fact.out
Continuous.comp
continuous_inclusion
continuous_add
instContinuousAddCoePrincipal
instContinuousAddCoePrincipal πŸ“–mathematicalAddMemClass
ContinuousAdd
RestrictedProduct
SetLike.coe
Filter.principal
topologicalSpace
instAddCoeOfAddMemClass
β€”Topology.IsInducing.continuousAdd
AddHom.addHomClass
Pi.continuousAdd
Topology.IsEmbedding.toIsInducing
isEmbedding_coe_of_principal
instContinuousConstSMulCoe πŸ“–mathematicalSMulMemClass
ContinuousConstSMul
RestrictedProduct
SetLike.coe
topologicalSpace
instSMulCoeOfSMulMemClass
β€”continuous_dom
Continuous.comp
continuous_inclusion
ContinuousConstSMul.continuous_const_smul
Topology.IsInducing.continuousConstSMul
instContinuousConstSMulForall
Topology.IsEmbedding.toIsInducing
isEmbedding_coe_of_principal
instContinuousConstVAddCoe πŸ“–mathematicalVAddMemClass
ContinuousConstVAdd
RestrictedProduct
SetLike.coe
topologicalSpace
instVAddCoeOfVAddMemClass
β€”continuous_dom
Continuous.comp
continuous_inclusion
ContinuousConstVAdd.continuous_const_vadd
Topology.IsInducing.continuousConstVAdd
instContinuousConstVAddForall
Topology.IsEmbedding.toIsInducing
isEmbedding_coe_of_principal
instContinuousInvCoe πŸ“–mathematicalInvMemClass
ContinuousInv
RestrictedProduct
SetLike.coe
topologicalSpace
instInvCoeOfInvMemClass
β€”continuous_dom
Continuous.comp
continuous_inclusion
ContinuousInv.continuous_inv
Topology.IsInducing.continuousInv
Pi.continuousInv
Topology.IsEmbedding.toIsInducing
isEmbedding_coe_of_principal
instContinuousMulCoeCofinite πŸ“–mathematicalMulMemClass
ContinuousMul
RestrictedProduct
SetLike.coe
Filter.cofinite
topologicalSpace
instMulCoeOfMulMemClass
β€”continuous_dom_prod
Fact.out
Continuous.comp
continuous_inclusion
continuous_mul
instContinuousMulCoePrincipal
instContinuousMulCoePrincipal πŸ“–mathematicalMulMemClass
ContinuousMul
RestrictedProduct
SetLike.coe
Filter.principal
topologicalSpace
instMulCoeOfMulMemClass
β€”Topology.IsInducing.continuousMul
MulHom.mulHomClass
Pi.continuousMul
Topology.IsEmbedding.toIsInducing
isEmbedding_coe_of_principal
instContinuousNegCoe πŸ“–mathematicalNegMemClass
ContinuousNeg
RestrictedProduct
SetLike.coe
topologicalSpace
instNegCoeOfNegMemClass
β€”continuous_dom
Continuous.comp
continuous_inclusion
ContinuousNeg.continuous_neg
Topology.IsInducing.continuousNeg
Pi.continuousNeg
Topology.IsEmbedding.toIsInducing
isEmbedding_coe_of_principal
instContinuousSMulCoePrincipal πŸ“–mathematicalSMulMemClass
ContinuousSMul
RestrictedProduct
SetLike.coe
Filter.principal
instSMulCoeOfSMulMemClass
topologicalSpace
β€”Topology.IsInducing.continuousSMul
instContinuousSMulForall
Topology.IsEmbedding.toIsInducing
isEmbedding_coe_of_principal
continuous_id
instContinuousVAddCoePrincipal πŸ“–mathematicalVAddMemClass
ContinuousVAdd
RestrictedProduct
SetLike.coe
Filter.principal
instVAddCoeOfVAddMemClass
topologicalSpace
β€”Topology.IsInducing.continuousVAdd
instContinuousVAddForall
Topology.IsEmbedding.toIsInducing
isEmbedding_coe_of_principal
continuous_id
instIsTopologicalAddGroupCoePrincipal πŸ“–mathematicalAddSubgroupClass
AddGroup.toSubNegMonoid
IsTopologicalAddGroup
RestrictedProduct
SetLike.coe
Filter.principal
topologicalSpace
instAddGroupCoeOfAddSubgroupClass
β€”instContinuousAddCoePrincipal
IsTopologicalAddGroup.toContinuousAdd
instContinuousNegCoe
IsTopologicalAddGroup.toContinuousNeg
instIsTopologicalGroupCoePrincipal πŸ“–mathematicalSubgroupClass
Group.toDivInvMonoid
IsTopologicalGroup
RestrictedProduct
SetLike.coe
Filter.principal
topologicalSpace
instGroupCoeOfSubgroupClass
β€”instContinuousMulCoePrincipal
IsTopologicalGroup.toContinuousMul
instContinuousInvCoe
IsTopologicalGroup.toContinuousInv
instIsTopologicalRingCoePrincipal πŸ“–mathematicalSubringClass
IsTopologicalRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
RestrictedProduct
SetLike.coe
Filter.principal
topologicalSpace
instRingCoeOfSubringClass
β€”instContinuousAddCoePrincipal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instContinuousMulCoePrincipal
IsTopologicalSemiring.toContinuousMul
instContinuousNegCoe
IsTopologicalRing.toContinuousNeg
instLocallyCompactSpaceCoeCofiniteOfAddSubgroupClassOfIsTopologicalAddGroupOfCompactSpaceSubtypeMem πŸ“–mathematicalAddSubgroupClass
AddGroup.toSubNegMonoid
IsTopologicalAddGroup
CompactSpace
SetLike.instMembership
instTopologicalSpaceSubtype
LocallyCompactSpace
RestrictedProduct
SetLike.coe
Filter.cofinite
topologicalSpace
β€”locallyCompactSpace_of_addGroup
WeaklyLocallyCompactSpace.locallyCompactSpace
instR1Space
IsTopologicalAddGroup.regularSpace
IsCompact.vadd
VAddAssocClass.continuousConstVAdd
VAddAssocClass.left
IsTopologicalAddGroup.toContinuousAdd
isCompact_iff_compactSpace
IsOpen.mem_nhds
IsOpen.vadd
Fact.out
add_zero
Set.vadd_mem_vadd_set
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
Filter.Eventually.of_forall
instLocallyCompactSpaceCoeCofiniteOfSubgroupClassOfIsTopologicalGroupOfCompactSpaceSubtypeMem πŸ“–mathematicalSubgroupClass
Group.toDivInvMonoid
IsTopologicalGroup
CompactSpace
SetLike.instMembership
instTopologicalSpaceSubtype
LocallyCompactSpace
RestrictedProduct
SetLike.coe
Filter.cofinite
topologicalSpace
β€”locallyCompactSpace_of_group
WeaklyLocallyCompactSpace.locallyCompactSpace
instR1Space
IsTopologicalGroup.regularSpace
IsCompact.smul
IsScalarTower.continuousConstSMul
IsScalarTower.left
IsTopologicalGroup.toContinuousMul
isCompact_iff_compactSpace
IsOpen.mem_nhds
IsOpen.smul
Fact.out
mul_one
Set.smul_mem_smul_set
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Filter.Eventually.of_forall
instT0Space πŸ“–mathematicalT0SpaceRestrictedProduct
topologicalSpace
β€”t0Space_of_injective_of_continuous
DFunLike.coe_injective
continuous_coe
Pi.instT0Space
instT1Space πŸ“–mathematicalT1SpaceRestrictedProduct
topologicalSpace
β€”t1Space_of_injective_of_continuous
DFunLike.coe_injective
continuous_coe
instT1SpaceForall
instT2Space πŸ“–mathematicalT2SpaceRestrictedProduct
topologicalSpace
β€”T2Space.of_injective_continuous
Pi.t2Space
DFunLike.coe_injective
continuous_coe
instWeaklyLocallyCompactSpaceCofiniteOfFactForallIsOpenOfCompactSpaceElem πŸ“–mathematicalWeaklyLocallyCompactSpace
CompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
RestrictedProduct
Filter.cofinite
topologicalSpace
β€”weaklyLocallyCompactSpace_of_cofinite
Fact.out
Filter.Eventually.of_forall
isCompact_iff_compactSpace
instWeaklyLocallyCompactSpacePrincipalOfFactLeFilterCofiniteOfCompactSpaceElem πŸ“–mathematicalWeaklyLocallyCompactSpace
CompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
RestrictedProduct
Filter.principal
topologicalSpace
β€”weaklyLocallyCompactSpace_of_principal
Fact.out
isCompact_iff_compactSpace
isEmbedding_coe_of_bot πŸ“–mathematicalβ€”Topology.IsEmbedding
RestrictedProduct
Bot.bot
Filter
Filter.instBot
topologicalSpace
Pi.topologicalSpace
DFunLike.coe
instDFunLike
β€”isEmbedding_coe_of_principal
Filter.principal_empty
isEmbedding_coe_of_principal πŸ“–mathematicalβ€”Topology.IsEmbedding
RestrictedProduct
Filter.principal
topologicalSpace
Pi.topologicalSpace
DFunLike.coe
instDFunLike
β€”topologicalSpace_eq_of_principal
DFunLike.coe_injective
isEmbedding_coe_of_top πŸ“–mathematicalβ€”Topology.IsEmbedding
RestrictedProduct
Top.top
Filter
Filter.instTop
topologicalSpace
Pi.topologicalSpace
DFunLike.coe
instDFunLike
β€”isEmbedding_coe_of_principal
Filter.principal_univ
isEmbedding_inclusion_principal πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.principal
Topology.IsEmbedding
RestrictedProduct
topologicalSpace
inclusion
β€”Topology.IsEmbedding.of_comp
continuous_inclusion
continuous_coe
isEmbedding_coe_of_principal
isEmbedding_inclusion_top πŸ“–mathematicalβ€”Topology.IsEmbedding
RestrictedProduct
Top.top
Filter
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
CoheytingAlgebra.toOrderTop
Order.Coframe.toCoheytingAlgebra
Filter.instCoframe
topologicalSpace
inclusion
le_top
β€”Topology.IsEmbedding.of_comp
le_top
continuous_inclusion
continuous_coe
isEmbedding_coe_of_top
isEmbedding_structureMap πŸ“–mathematicalβ€”Topology.IsEmbedding
RestrictedProduct
Pi.topologicalSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
topologicalSpace
structureMap
β€”Topology.IsEmbedding.comp
le_top
isEmbedding_inclusion_top
Homeomorph.isEmbedding
isOpenEmbedding_inclusion_principal πŸ“–mathematicalIsOpen
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cofinite
Filter.principal
Topology.IsOpenEmbedding
RestrictedProduct
topologicalSpace
inclusion
β€”isEmbedding_inclusion_principal
range_inclusion
isOpen_forall_imp_mem
isOpenEmbedding_structureMap πŸ“–mathematicalIsOpenTopology.IsOpenEmbedding
RestrictedProduct
Filter.cofinite
Pi.topologicalSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
topologicalSpace
structureMap
β€”isEmbedding_structureMap
range_structureMap
isOpen_forall_mem
isOpen_forall_imp_mem πŸ“–mathematicalIsOpenRestrictedProduct
Filter.cofinite
topologicalSpace
setOf
β€”topologicalSpace_eq_iSup
isOpen_forall_imp_mem_of_principal
isOpen_forall_imp_mem_of_principal πŸ“–mathematicalIsOpen
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cofinite
Filter.principal
RestrictedProduct
topologicalSpace
setOf
β€”Set.ext
IsOpen.preimage
continuous_coe
isOpen_set_pi
Set.Finite.inter_of_left
Filter.le_principal_iff
isOpen_forall_mem πŸ“–mathematicalIsOpenRestrictedProduct
Filter.cofinite
topologicalSpace
setOf
β€”topologicalSpace_eq_iSup
isOpen_forall_mem_of_principal
isOpen_forall_mem_of_principal πŸ“–mathematicalIsOpen
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cofinite
Filter.principal
RestrictedProduct
topologicalSpace
setOf
β€”isOpen_forall_imp_mem_of_principal
isTopologicalAddGroup πŸ“–mathematicalAddSubgroupClass
AddGroup.toSubNegMonoid
IsTopologicalAddGroup
RestrictedProduct
SetLike.coe
Filter.cofinite
topologicalSpace
instAddGroupCoeOfAddSubgroupClass
β€”instContinuousAddCoeCofinite
IsTopologicalAddGroup.toContinuousAdd
instContinuousNegCoe
IsTopologicalAddGroup.toContinuousNeg
isTopologicalGroup πŸ“–mathematicalSubgroupClass
Group.toDivInvMonoid
IsTopologicalGroup
RestrictedProduct
SetLike.coe
Filter.cofinite
topologicalSpace
instGroupCoeOfSubgroupClass
β€”instContinuousMulCoeCofinite
IsTopologicalGroup.toContinuousMul
instContinuousInvCoe
IsTopologicalGroup.toContinuousInv
isTopologicalRing πŸ“–mathematicalSubringClass
IsTopologicalRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
RestrictedProduct
SetLike.coe
Filter.cofinite
topologicalSpace
instRingCoeOfSubringClass
β€”instContinuousAddCoeCofinite
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instContinuousMulCoeCofinite
IsTopologicalSemiring.toContinuousMul
instContinuousNegCoe
IsTopologicalRing.toContinuousNeg
locallyCompactSpace_of_addGroup πŸ“–mathematicalAddSubgroupClass
AddGroup.toSubNegMonoid
IsTopologicalAddGroup
LocallyCompactSpace
RestrictedProduct
SetLike.coe
Filter.cofinite
topologicalSpace
β€”WeaklyLocallyCompactSpace.locallyCompactSpace
instR1Space
IsTopologicalAddGroup.regularSpace
isTopologicalAddGroup
weaklyLocallyCompactSpace_of_cofinite
Fact.out
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompactSpace_of_group πŸ“–mathematicalSubgroupClass
Group.toDivInvMonoid
IsTopologicalGroup
LocallyCompactSpace
RestrictedProduct
SetLike.coe
Filter.cofinite
topologicalSpace
β€”WeaklyLocallyCompactSpace.locallyCompactSpace
instR1Space
IsTopologicalGroup.regularSpace
isTopologicalGroup
weaklyLocallyCompactSpace_of_cofinite
Fact.out
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
mapAlong_continuous πŸ“–mathematicalFilter.Tendsto
Filter.Eventually
Set.MapsTo
Continuous
RestrictedProduct
topologicalSpace
mapAlong
β€”continuous_dom
Filter.le_principal_iff
Filter.inter_mem
Continuous.comp
continuous_inclusion
continuous_rng_of_principal
continuous_pi
continuous_eval
nhds_eq_map_inclusion πŸ“–mathematicalIsOpen
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cofinite
Filter.principal
nhds
RestrictedProduct
topologicalSpace
inclusion
Filter.map
β€”Topology.IsOpenEmbedding.map_nhds_eq
isOpenEmbedding_inclusion_principal
nhds_eq_map_structureMap πŸ“–mathematicalIsOpennhds
RestrictedProduct
Filter.cofinite
topologicalSpace
structureMap
Filter.map
Pi.topologicalSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Topology.IsOpenEmbedding.map_nhds_eq
isOpenEmbedding_structureMap
nhds_zero_eq_map_ofPre πŸ“–mathematicalZeroMemClass
IsOpen
SetLike.coe
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cofinite
Filter.principal
nhds
RestrictedProduct
topologicalSpace
inclusion
instZeroCoeOfZeroMemClass
Filter.map
β€”nhds_eq_map_inclusion
nhds_zero_eq_map_structureMap πŸ“–mathematicalZeroMemClass
IsOpen
SetLike.coe
nhds
RestrictedProduct
Filter.cofinite
topologicalSpace
structureMap
Pi.instZero
Set.Elem
ZeroMemClass.zero
Filter.map
Pi.topologicalSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”nhds_eq_map_structureMap
topologicalSpace_eq_iSup πŸ“–mathematicalβ€”topologicalSpace
iSup
TopologicalSpace
RestrictedProduct
Set
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.principal
TopologicalSpace.coinduced
inclusion
β€”iSup_congr_Prop
topologicalSpace_eq_of_principal
topologicalSpace_eq_of_bot πŸ“–mathematicalβ€”topologicalSpace
Bot.bot
Filter
Filter.instBot
TopologicalSpace.induced
RestrictedProduct
DFunLike.coe
instDFunLike
TopologicalSpace
Pi.topologicalSpace
β€”topologicalSpace_eq_of_principal
Filter.principal_empty
topologicalSpace_eq_of_principal πŸ“–mathematicalβ€”topologicalSpace
Filter.principal
TopologicalSpace.induced
RestrictedProduct
DFunLike.coe
instDFunLike
TopologicalSpace
Pi.topologicalSpace
β€”le_antisymm
continuous_iff_le_induced
continuous_coe
le_iSupβ‚‚_of_le
le_rfl
le_refl
inclusion_eq_id
coinduced_id
topologicalSpace_eq_of_top πŸ“–mathematicalβ€”topologicalSpace
Top.top
Filter
Filter.instTop
TopologicalSpace.induced
RestrictedProduct
DFunLike.coe
instDFunLike
TopologicalSpace
Pi.topologicalSpace
β€”topologicalSpace_eq_of_principal
Filter.principal_univ
weaklyLocallyCompactSpace_of_cofinite πŸ“–mathematicalIsOpen
WeaklyLocallyCompactSpace
RestrictedProduct
Filter.cofinite
topologicalSpace
β€”Filter.le_principal_iff
Filter.Eventually.and
exists_inclusion_eq_of_eventually
nhds_eq_map_inclusion
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
weaklyLocallyCompactSpace_of_principal
IsCompact.image
continuous_inclusion
Filter.image_mem_map
weaklyLocallyCompactSpace_of_principal πŸ“–mathematicalWeaklyLocallyCompactSpace
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cofinite
Filter.principal
IsCompact
RestrictedProduct
topologicalSpace
β€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
isCompact_univ_pi
set_pi_mem_nhds
Filter.mem_cofinite
Filter.le_principal_iff
Topology.IsInducing.isCompact_preimage_iff
Topology.IsEmbedding.toIsInducing
isEmbedding_coe_of_principal
range_coe_principal
Set.pi_if
Set.inter_subset_left
Filter.mem_of_superset
Topology.IsInducing.nhds_eq_comap
Filter.preimage_mem_comap

(root)

Definitions

NameCategoryTheorems
TopologicalSpace πŸ“–CompData
224 mathmath: continuousNeg_iInf, Topology.lawson_le_scott, coinduced_bot, PolynormableSpace.sInf, continuous_sup_rng_right, GroupTopology.toTopologicalSpace_iInf, equicontinuousWithinAt_iInf_dom, continuousMul_inf, ContinuousMap.compactOpen_eq_iInf_induced, nhds_sInf, continuousMul_sInf, AddGroupTopology.toTopologicalSpace_inf, setOf_isOpen_iSup, isClosed_iSup_iff, topologicalGroup_iInf, le_nhdsAdjoint_iff, continuous_sup_dom, Topology.IsGeneratedBy.le_generatedBy, R1Space.iInf, TopologicalSpace.setOf_isOpen_injective, nhds_iInf, UCompactlyGeneratedSpace.le_compactlyGenerated, continuous_sSup_dom, isClosed_sSup_iff, MeasureTheory.LevyProkhorov.eq_convergenceInDistribution, induced_inf, inseparable_top, GroupTopology.toTopologicalSpace_inf, TopologicalSpace.eq_induced_by_maps_to_sierpinski, LocallyConvexSpace.inf, deltaGenerated_eq_coinduced, continuousVAdd_sInf, deltaGenerated_le, le_of_nhds_le_nhds, generateFrom_sUnion, continuous_inf_dom_leftβ‚‚, AddGroupTopology.toTopologicalSpace_injective, t2Space_antitone, induced_const, generateFrom_iUnion_isOpen, continuousAdd_inf, TopologicalSpace.eq_top_iff_forall_inseparable, continuous_inf_dom_rightβ‚‚, UniformSpace.toTopologicalSpace_top, generateFrom_union, isOpen_sup, AddGroupTopology.toTopologicalSpace_sInf, UniformConvergenceCLM.topologicalSpace_mono, TopCat.pullback_topology, generateFrom_iInter_of_generateFrom_eq_self, TopCat.colimit_topology, topologicalGroup_inf, Pi.induced_restrict, Measurable.exists_continuous, Topology.upperSet_le_scott, topologicalAddGroup_inf, induced_topology_pure, continuousNeg_sInf, continuousNeg_inf, TopCat.prod_topology, IndiscreteTopology.eq_top, regularSpace_sInf, topologicalAddGroup_sInf, TopologicalSpace.isOpen_top_iff, TopologicalSpace.IsTopologicalBasis.inf_induced, continuous_iInf_rng, TopologicalSpace.le_def, Topology.IsGeneratedBy.iff_le_generatedBy, continuous_bot, continuousInv_inf, TopologicalSpace.generateFrom_surjective, continuous_inf_dom_right, TopologicalSpace.generateFrom_anti, isOpen_sSup_iff, isDenseEmbedding_pure, induced_sInf, Topology.isLawson_le_isScott, le_nhdsAdjoint_iff', TopCat.nonempty_isLimit_iff_eq_induced, SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf, SequentialSpace.iSup, continuousInv_sInf, RingTopology.toTopologicalSpace_injective, continuous_top, pullbackTopology_def, le_induced_generateFrom, TopologicalSpace.secondCountableTopology_iInf, AddGroupTopology.toTopologicalSpace_top, LocallyConvexSpace.iInf, Topology.IsGeneratedBy.sup, Topology.scottHausdorff_le_isLawson, t1Space_antitone, continuousSMul_sInf, DeltaGeneratedSpace.le_deltaGenerated, generateFrom_iUnion, PolynormableSpace.induced, coinduced_sSup, LinearMap.mem_span_iff_continuous_of_finite, nhds_top, Topology.scottHausdorff_le_lawson, UniformOnFun.topologicalSpace_eq, TopologicalSpace.IsTopologicalBasis.inf, GroupTopology.toTopologicalSpace_sInf, continuousAdd_iInf, regularSpace_iInf, continuous_iSup_dom, R1Space.inf, equicontinuous_iInf_dom, UniformSpace.toTopologicalSpace_bot, CompHausLike.LocallyConstant.locallyConstantIsoContinuousMap_hom, generateFrom_iInter, alexandrovDiscrete_iSup, continuous_iff_le_induced, coinduced_le_iff_le_induced, RestrictedProduct.topologicalSpace_eq_of_principal, UniformSpace.toTopologicalSpace_sInf, GroupTopology.toTopologicalSpace_bot, PolynormableSpace.iInf, nhds_inf, TopCat.coinduced_of_isColimit, topologicalGroup_sInf, isOpen_iSup_iff, Topology.IsScott.scottHausdorff_le, ModuleTopology.eq_coinduced_of_surjectiveβ‚›β‚—, Topology.scottHausdorff_le_scott, AlexandrovDiscrete.sup, AddGroupTopology.toTopologicalSpace_le, ModuleTopology.eq_coinduced_of_surjective, Pi.induced_precomp, UniformSpace.toTopologicalSpace_iInf, indiscreteTopology_iff, Topology.scottHausdorff_le_lower, continuousSMul_inf, continuousAdd_sInf, DeltaGeneratedSpace.sup, continuous_id_iff_le, LocallyConvexSpace.sInf, RegularSpace.inf, Units.topology_eq_inf, induced_topology_le_preorder, completelyRegularSpace_iInf, continuousSMul_iInf, coinduced_iSup, IsTopologicalBasis.iInf, le_iff_nhds, Pi.induced_restrict_sUnion, discreteTopology_bot, equicontinuousAt_iInf_dom, completelyRegularSpace_inf, isDenseInducing_pure, Continuous.le_induced, continuous_iSup_rng, NormedSpace.Dual.dual_norm_topology_le_weak_dual_topology, TopologicalSpace.generatedBy_le, induced_to_pi, continuousMul_iInf, moduleTopology_le, TopCat.induced_of_isLimit, isOpen_implies_isOpen_iff, continuous_iInf_dom, TopologicalSpace.gc_generateFrom, continuousVAdd_inf, coinduced_sup, LinearOrder.bot_topologicalSpace_eq_generateFrom, inducing_iInf_to_pi, TopCat.nonempty_isColimit_iff_eq_coinduced, DiscreteTopology.eq_bot, GroupTopology.toTopologicalSpace_le, equicontinuousOn_iInf_dom, gc_nhds, generateFrom_union_isOpen, RestrictedProduct.topologicalSpace_eq_of_bot, UniformSpace.toTopologicalSpace_inf, eq_bot_of_singletons_open, Topology.IsUpperSet.upperSet_le_upper, MeasureTheory.LevyProkhorov.le_convergenceInDistribution, Pi.induced_precomp', continuous_iff_coinduced_le, continuousInv_iInf, MeasureTheory.levyProkhorov_le_convergenceInDistribution, Topology.lawson_le_lower, borel_anti, RestrictedProduct.topologicalSpace_eq_iSup, withSeminorms_iInf, ContinuousMap.compactOpen_le_induced, continuous_sup_rng_left, induced_top, UniformSpace.toTopologicalSpace_mono, setOf_isOpen_sSup, Topology.IsLower.scottHausdorff_le, continuous_inf_rng, RestrictedProduct.topologicalSpace_eq_of_top, GroupTopology.toTopologicalSpace_top, AddGroupTopology.toTopologicalSpace_iInf, Topology.IsGeneratedBy.iSup, induced_iInf, TopCat.limit_topology, generateFrom_inter, TestFunction.topologicalSpace_le_iff, R1Space.sInf, PolynormableSpace.inf, TopologicalSpace.leftInverse_generateFrom, SequentialSpace.sup, instIndiscreteTopology, LinearMap.mem_span_iff_continuous, AddUnits.topology_eq_inf, topologicalAddGroup_iInf, Topology.IsLowerSet.lowerSet_le_lower, DeltaGeneratedSpace.iSup, gc_coinduced_induced, continuous_inf_dom_left, GroupTopology.toTopologicalSpace_injective, continuous_sInf_rng, TopologicalSpace.le_generateFrom_iff_subset_isOpen, le_generateFrom, TopologicalSpace.Opens.IsBasis.le_iff, TestFunction.originalTop_le, Continuous.coinduced_le, continuousVAdd_iInf, IsTopologicalBasis.iInf_induced, LinearMap.withSeminorms_induced, AddGroupTopology.toTopologicalSpace_bot, setOf_isOpen_sup, MeasureTheory.levyProkhorov_eq_convergenceInDistribution

---

← Back to Index