Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Algebra/Ring/Basic.lean

Statistics

MetricCount
Definitionscomp, IsTopologicalRing, IsTopologicalSemiring, nonUnitalCommRingTopologicalClosure, topologicalClosure, nonUnitalCommSemiringTopologicalClosure, topologicalClosure, RingTopology, coinduced, inhabited, instCompleteLattice, instCompleteSemilatticeInf, instPartialOrder, toAddGroupTopology, orderEmbedding, toTopologicalSpace, commRingTopologicalClosure, topologicalClosure, commSemiringTopologicalClosure, topologicalClosure
20
TheoremstopologicalRing, topologicalSemiring, of_addGroup_of_nhds_zero, of_nhds_zero, toContinuousNeg, toIsTopologicalSemiring, to_topologicalAddGroup, continuousNeg_of_mul, toContinuousAdd, toContinuousMul, toIsTopologicalRing, instIsTopologicalRing, isClosed_topologicalClosure, le_topologicalClosure, topologicalClosure_minimal, instIsTopologicalSemiring, isClosed_topologicalClosure, le_topologicalClosure, topologicalClosure_coe, topologicalClosure_minimal, instIsTopologicalRing, instIsTopologicalSemiring, coinduced_continuous, ext, ext_iff, toIsTopologicalRing, toTopologicalSpace_injective, continuousSMul, instIsTopologicalRing, isClosed_topologicalClosure, le_topologicalClosure, topologicalClosure_minimal, continuousSMul, isClosed_topologicalClosure, le_topologicalClosure, topologicalClosure_coe, topologicalClosure_minimal, topologicalSemiring, instContinuousAddForallOfIsTopologicalSemiring, instContinuousAddMulOpposite, instContinuousMulAddOpposite, instContinuousNegMulOpposite, instIsTopologicalRingAddOpposite, instIsTopologicalRingMulOpposite, instIsTopologicalRingProd, instIsTopologicalRingULift, instIsTopologicalSemiringAddOpposite, instIsTopologicalSemiringMulOpposite, instIsTopologicalSemiringProd, instIsTopologicalSemiringULift, mulLeft_continuous, mulRight_continuous
52
Total72

AbsoluteValue

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
2 mathmath: LiesOver.comp_eq', LiesOver.comp_eq

DiscreteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
topologicalRing πŸ“–mathematicalβ€”IsTopologicalRingβ€”topologicalSemiring
IsTopologicalAddGroup.toContinuousNeg
topologicalAddGroup_of_discreteTopology
topologicalSemiring πŸ“–mathematicalβ€”IsTopologicalSemiringβ€”continuousAdd_of_discreteTopology
continuousMul_of_discreteTopology

IsTopologicalRing

Theorems

NameKindAssumesProvesValidatesDepends On
of_addGroup_of_nhds_zero πŸ“–mathematicalFilter.Tendsto
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
SProd.sprod
Filter
Filter.instSProd
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
IsTopologicalRingβ€”IsTopologicalAddGroup.toContinuousAdd
continuous_of_continuousAt_zeroβ‚‚
nhds_prod_eq
MulZeroClass.mul_zero
MulZeroClass.zero_mul
IsTopologicalAddGroup.toContinuousNeg
of_nhds_zero πŸ“–mathematicalFilter.Tendsto
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
SProd.sprod
Filter
Filter.instSProd
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
Distrib.toMul
Filter.map
IsTopologicalRingβ€”IsTopologicalAddGroup.of_comm_of_nhds_zero
of_addGroup_of_nhds_zero
toContinuousNeg πŸ“–mathematicalβ€”ContinuousNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
β€”β€”
toIsTopologicalSemiring πŸ“–mathematicalβ€”IsTopologicalSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”β€”
to_topologicalAddGroup πŸ“–mathematicalβ€”IsTopologicalAddGroup
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
β€”IsTopologicalSemiring.toContinuousAdd
toIsTopologicalSemiring
toContinuousNeg

IsTopologicalSemiring

Theorems

NameKindAssumesProvesValidatesDepends On
continuousNeg_of_mul πŸ“–mathematicalβ€”ContinuousNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
NonAssocRing.toNonUnitalNonAssocRing
β€”neg_mul
one_mul
Continuous.fun_mul
continuous_const
continuous_id
toContinuousAdd πŸ“–mathematicalβ€”ContinuousAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
toContinuousMul πŸ“–mathematicalβ€”ContinuousMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
toIsTopologicalRing πŸ“–mathematicalβ€”IsTopologicalRing
NonAssocRing.toNonUnitalNonAssocRing
β€”continuousNeg_of_mul
toContinuousMul

NonUnitalSubring

Definitions

NameCategoryTheorems
nonUnitalCommRingTopologicalClosure πŸ“–CompOpβ€”
topologicalClosure πŸ“–CompOp
3 mathmath: topologicalClosure_minimal, isClosed_topologicalClosure, le_topologicalClosure

Theorems

NameKindAssumesProvesValidatesDepends On
instIsTopologicalRing πŸ“–mathematicalβ€”IsTopologicalRing
NonUnitalSubring
NonUnitalRing.toNonUnitalNonAssocRing
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
toNonUnitalRing
β€”Subsemigroup.instMulMemClass
Subsemigroup.continuousMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
AddSubgroup.instIsTopologicalAddGroupSubtypeMem
IsTopologicalRing.to_topologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
IsTopologicalAddGroup.toContinuousNeg
isClosed_topologicalClosure πŸ“–mathematicalβ€”IsClosed
SetLike.coe
NonUnitalSubring
NonUnitalRing.toNonUnitalNonAssocRing
instSetLike
topologicalClosure
β€”isClosed_closure
le_topologicalClosure πŸ“–mathematicalβ€”NonUnitalSubring
NonUnitalRing.toNonUnitalNonAssocRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosure
β€”subset_closure
topologicalClosure_minimal πŸ“–mathematicalNonUnitalSubring
NonUnitalRing.toNonUnitalNonAssocRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosureβ€”closure_minimal

NonUnitalSubsemiring

Definitions

NameCategoryTheorems
nonUnitalCommSemiringTopologicalClosure πŸ“–CompOpβ€”
topologicalClosure πŸ“–CompOp
4 mathmath: isClosed_topologicalClosure, le_topologicalClosure, topologicalClosure_minimal, topologicalClosure_coe

Theorems

NameKindAssumesProvesValidatesDepends On
instIsTopologicalSemiring πŸ“–mathematicalβ€”IsTopologicalSemiring
NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
NonUnitalSubsemiringClass.toNonUnitalSemiring
instNonUnitalSubsemiringClass
β€”Subsemigroup.instMulMemClass
Subsemigroup.continuousMul
IsTopologicalSemiring.toContinuousMul
AddSubmonoid.continuousAdd
IsTopologicalSemiring.toContinuousAdd
instNonUnitalSubsemiringClass
isClosed_topologicalClosure πŸ“–mathematicalβ€”IsClosed
SetLike.coe
NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
instSetLike
topologicalClosure
β€”isClosed_closure
le_topologicalClosure πŸ“–mathematicalβ€”NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosure
β€”subset_closure
topologicalClosure_coe πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
instSetLike
topologicalClosure
closure
β€”β€”
topologicalClosure_minimal πŸ“–mathematicalNonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosureβ€”closure_minimal

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
instIsTopologicalRing πŸ“–mathematicalIsTopologicalRingtopologicalSpace
nonUnitalNonAssocRing
β€”instIsTopologicalSemiring
IsTopologicalRing.toIsTopologicalSemiring
continuousNeg
IsTopologicalRing.toContinuousNeg
instIsTopologicalSemiring πŸ“–mathematicalIsTopologicalSemiringtopologicalSpace
nonUnitalNonAssocSemiring
β€”instContinuousAddForallOfIsTopologicalSemiring
continuousMul
IsTopologicalSemiring.toContinuousMul

RingTopology

Definitions

NameCategoryTheorems
coinduced πŸ“–CompOp
1 mathmath: coinduced_continuous
inhabited πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOpβ€”
instCompleteSemilatticeInf πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
toAddGroupTopology πŸ“–CompOpβ€”
toTopologicalSpace πŸ“–CompOp
4 mathmath: ext_iff, toIsTopologicalRing, coinduced_continuous, toTopologicalSpace_injective

Theorems

NameKindAssumesProvesValidatesDepends On
coinduced_continuous πŸ“–mathematicalβ€”Continuous
toTopologicalSpace
coinduced
β€”continuous_sInf_rng
Set.forall_mem_image
continuous_iff_coinduced_le
ext πŸ“–β€”TopologicalSpace.IsOpen
toTopologicalSpace
β€”β€”toTopologicalSpace_injective
TopologicalSpace.ext
ext_iff πŸ“–mathematicalβ€”TopologicalSpace.IsOpen
toTopologicalSpace
β€”ext
toIsTopologicalRing πŸ“–mathematicalβ€”IsTopologicalRing
toTopologicalSpace
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
toTopologicalSpace_injective πŸ“–mathematicalβ€”RingTopology
TopologicalSpace
toTopologicalSpace
β€”β€”

RingTopology.toAddGroupTopology

Definitions

NameCategoryTheorems
orderEmbedding πŸ“–CompOpβ€”

Subring

Definitions

NameCategoryTheorems
commRingTopologicalClosure πŸ“–CompOpβ€”
topologicalClosure πŸ“–CompOp
3 mathmath: topologicalClosure_minimal, le_topologicalClosure, isClosed_topologicalClosure

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalβ€”ContinuousSMul
Subring
SetLike.instMembership
instSetLike
instSMulSubtypeMem
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
MulAction.toSemigroupAction
instTopologicalSpaceSubtype
β€”Subsemiring.continuousSMul
instIsTopologicalRing πŸ“–mathematicalβ€”IsTopologicalRing
Subring
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
β€”Submonoid.continuousMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
AddSubgroup.instIsTopologicalAddGroupSubtypeMem
IsTopologicalRing.to_topologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
IsTopologicalAddGroup.toContinuousNeg
isClosed_topologicalClosure πŸ“–mathematicalβ€”IsClosed
SetLike.coe
Subring
instSetLike
topologicalClosure
β€”isClosed_closure
le_topologicalClosure πŸ“–mathematicalβ€”Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosure
β€”subset_closure
topologicalClosure_minimal πŸ“–mathematicalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosureβ€”closure_minimal

Subsemiring

Definitions

NameCategoryTheorems
commSemiringTopologicalClosure πŸ“–CompOpβ€”
topologicalClosure πŸ“–CompOp
4 mathmath: isClosed_topologicalClosure, topologicalClosure_minimal, topologicalClosure_coe, le_topologicalClosure

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul πŸ“–mathematicalβ€”ContinuousSMul
Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
smul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
instTopologicalSpaceSubtype
β€”Submonoid.continuousSMul
isClosed_topologicalClosure πŸ“–mathematicalβ€”IsClosed
SetLike.coe
Subsemiring
Semiring.toNonAssocSemiring
instSetLike
topologicalClosure
β€”isClosed_closure
le_topologicalClosure πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosure
β€”subset_closure
topologicalClosure_coe πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
Semiring.toNonAssocSemiring
instSetLike
topologicalClosure
closure
β€”β€”
topologicalClosure_minimal πŸ“–mathematicalSubsemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosureβ€”closure_minimal
topologicalSemiring πŸ“–mathematicalβ€”IsTopologicalSemiring
Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
NonAssocSemiring.toNonUnitalNonAssocSemiring
toNonAssocSemiring
β€”Submonoid.continuousMul
IsTopologicalSemiring.toContinuousMul
AddSubmonoid.continuousAdd
IsTopologicalSemiring.toContinuousAdd

(root)

Definitions

NameCategoryTheorems
IsTopologicalRing πŸ“–CompData
39 mathmath: NonUnitalSubring.instIsTopologicalRing, IsTopologicalRing.of_nhds_zero, MvPowerSeries.WithPiTopology.instIsTopologicalRing, RingFilterBasis.isTopologicalRing, IsTopologicalSemiring.toIsTopologicalRing, instIsTopologicalRingULift, RingTopology.toIsTopologicalRing, IsModuleTopology.isTopologicalRing, IsTopologicalDivisionRing.toIsTopologicalRing, instIsTopologicalRingAddOpposite, UniformSpace.topologicalRing, NumberField.InfiniteAdeleRing.instIsTopologicalRing, TopCommRingCat.forgetToTopCatTopologicalRing, Valued.instIsTopologicalRing, NonarchimedeanRing.toIsTopologicalRing, instIsTopologicalRingReal, instIsTopologicalRingMulOpposite, IsDedekindDomain.FiniteAdeleRing.instIsTopologicalRing, IsStrictOrderedRing.topologicalRing, NonUnitalSeminormedRing.toIsTopologicalRing, instIsTopologicalRingLocalization, Subring.instIsTopologicalRing, IsValuativeTopology.instIsTopologicalRing, TopCommRingCat.isTopologicalRing, NonUnitalSubalgebra.instIsTopologicalRing, ContinuousMap.instIsTopologicalRingOfLocallyCompactSpace, NonUnitalStarSubalgebra.instIsTopologicalRing, TrivSqZeroExt.instIsTopologicalRingOfIsTopologicalAddGroupOfContinuousSMulMulOpposite, PowerSeries.WithPiTopology.instIsTopologicalRing, DiscreteTopology.topologicalRing, NumberField.AdeleRing.instIsTopologicalRing, Rat.instIsTopologicalRing, Matrix.topologicalRing, topologicalRing_quotient, instIsTopologicalRingProd, IsTopologicalRing.of_norm, WithIdealFilter.instIsTopologicalRing, IsTopologicalRing.of_addGroup_of_nhds_zero, UniformSpace.Completion.topologicalRing
IsTopologicalSemiring πŸ“–CompData
20 mathmath: instIsTopologicalSemiringProd, IsTopologicalRing.toIsTopologicalSemiring, NonUnitalStarSubalgebra.instIsTopologicalSemiring, topologicalSemiring_of_contMDiffRing, instIsTopologicalSemiringULift, StarSubalgebra.instIsTopologicalSemiringSubtypeMem, NNReal.instIsTopologicalSemiring, DiscreteTopology.topologicalSemiring, PowerSeries.WithPiTopology.instIsTopologicalSemiring, ContinuousMap.instIsTopologicalSemiringOfLocallyCompactSpace, instIsTopologicalSemiringSubtypeMemSubalgebra, TrivSqZeroExt.topologicalSemiring, Subsemiring.topologicalSemiring, instIsTopologicalSemiringMatrix, instIsTopologicalSemiringAddOpposite, NonUnitalSubsemiring.instIsTopologicalSemiring, NonUnitalSubalgebra.instIsTopologicalSemiring, instIsTopologicalSemiringMulOpposite, MvPowerSeries.WithPiTopology.instIsTopologicalSemiring, NNRat.instIsTopologicalSemiring
RingTopology πŸ“–CompData
1 mathmath: RingTopology.toTopologicalSpace_injective

Theorems

NameKindAssumesProvesValidatesDepends On
instContinuousAddForallOfIsTopologicalSemiring πŸ“–mathematicalIsTopologicalSemiringContinuousAdd
Pi.topologicalSpace
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”Pi.continuousAdd
IsTopologicalSemiring.toContinuousAdd
instContinuousAddMulOpposite πŸ“–mathematicalβ€”ContinuousAdd
MulOpposite
MulOpposite.instTopologicalSpaceMulOpposite
MulOpposite.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”continuousAdd_induced
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
instContinuousMulAddOpposite πŸ“–mathematicalβ€”ContinuousMul
AddOpposite
AddOpposite.instTopologicalSpaceAddOpposite
AddOpposite.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”continuousMul_induced
MulEquivClass.instMulHomClass
MulEquiv.instMulEquivClass
instContinuousNegMulOpposite πŸ“–mathematicalβ€”ContinuousNeg
MulOpposite
MulOpposite.instTopologicalSpaceMulOpposite
MulOpposite.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
β€”Topology.IsInducing.continuousNeg
Homeomorph.isInducing
instIsTopologicalRingAddOpposite πŸ“–mathematicalβ€”IsTopologicalRing
AddOpposite
AddOpposite.instTopologicalSpaceAddOpposite
AddOpposite.instNonUnitalNonAssocRing
β€”instIsTopologicalSemiringAddOpposite
IsTopologicalRing.toIsTopologicalSemiring
instContinuousNegAddOpposite
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingMulOpposite πŸ“–mathematicalβ€”IsTopologicalRing
MulOpposite
MulOpposite.instTopologicalSpaceMulOpposite
MulOpposite.instNonUnitalNonAssocRing
β€”instIsTopologicalSemiringMulOpposite
IsTopologicalRing.toIsTopologicalSemiring
instContinuousNegMulOpposite
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingProd πŸ“–mathematicalβ€”IsTopologicalRing
instTopologicalSpaceProd
Prod.instNonUnitalNonAssocRing
β€”instIsTopologicalSemiringProd
IsTopologicalRing.toIsTopologicalSemiring
Prod.continuousNeg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingULift πŸ“–mathematicalβ€”IsTopologicalRing
ULift.topologicalSpace
ULift.nonUnitalNonAssocRing
β€”instContinuousAddULift
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instContinuousMulULift
IsTopologicalSemiring.toContinuousMul
instContinuousNegULift
IsTopologicalRing.toContinuousNeg
instIsTopologicalSemiringAddOpposite πŸ“–mathematicalβ€”IsTopologicalSemiring
AddOpposite
AddOpposite.instTopologicalSpaceAddOpposite
AddOpposite.instNonUnitalNonAssocSemiring
β€”AddOpposite.instContinuousAdd
IsTopologicalSemiring.toContinuousAdd
instContinuousMulAddOpposite
IsTopologicalSemiring.toContinuousMul
instIsTopologicalSemiringMulOpposite πŸ“–mathematicalβ€”IsTopologicalSemiring
MulOpposite
MulOpposite.instTopologicalSpaceMulOpposite
MulOpposite.instNonUnitalNonAssocSemiring
β€”instContinuousAddMulOpposite
IsTopologicalSemiring.toContinuousAdd
MulOpposite.instContinuousMul
IsTopologicalSemiring.toContinuousMul
instIsTopologicalSemiringProd πŸ“–mathematicalβ€”IsTopologicalSemiring
instTopologicalSpaceProd
Prod.instNonUnitalNonAssocSemiring
β€”Prod.continuousAdd
IsTopologicalSemiring.toContinuousAdd
Prod.continuousMul
IsTopologicalSemiring.toContinuousMul
instIsTopologicalSemiringULift πŸ“–mathematicalβ€”IsTopologicalSemiring
ULift.topologicalSpace
ULift.nonUnitalNonAssocSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”instContinuousAddULift
IsTopologicalSemiring.toContinuousAdd
instContinuousMulULift
IsTopologicalSemiring.toContinuousMul
mulLeft_continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
AddMonoidHom.instFunLike
AddMonoidHom.mulLeft
β€”Continuous.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
continuous_const
continuous_id
mulRight_continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
AddMonoidHom.instFunLike
AddMonoidHom.mulRight
β€”Continuous.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
continuous_id
continuous_const

---

← Back to Index