Documentation Verification Report

Compact

📁 Source: Mathlib/Topology/Algebra/Ring/Compact.lean

Statistics

MetricCount
Definitions0
TheoremsisOpen_of_isMaximal, isOpen_pow_of_isMaximal, finite_of_compactSpace_of_t2Space, isOpen_iff, isOpen_of_ne_bot, isOpen_iff, finite_residueField_of_compactSpace, isOpen_iff_finite_quotient, isOpen_maximalIdeal, isOpen_maximalIdeal_pow, instFiniteQuotientIdealOfIsMaximal
11
Total11

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_of_isMaximal 📖mathematicalIsOpen
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
AddSubgroup.finiteIndex_of_finite_quotient
DivisionRing.finite_of_compactSpace_of_t2Space
topologicalRing_quotient
instCompactSpaceQuotientIdeal
T25Space.t2Space
T3Space.t25Space
Submodule.t3_quotient_of_isClosed
IsTopologicalRing.to_topologicalAddGroup
IsNoetherianRing.isClosed_ideal
AddSubgroup.isOpen_of_isClosed_of_finiteIndex
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
isOpen_pow_of_isMaximal 📖mathematicalIsOpen
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
IsScalarTower.right
AddSubgroup.finiteIndex_of_finite_quotient
finite_quotient_pow
IsNoetherian.noetherian
DivisionRing.finite_of_compactSpace_of_t2Space
topologicalRing_quotient
instCompactSpaceQuotientIdeal
T25Space.t2Space
T3Space.t25Space
Submodule.t3_quotient_of_isClosed
IsTopologicalRing.to_topologicalAddGroup
IsNoetherianRing.isClosed_ideal
AddSubgroup.isOpen_of_isClosed_of_finiteIndex
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsCompact.isClosed
isCompact_of_fg

IsArtinianRing

Theorems

NameKindAssumesProvesValidatesDepends On
finite_of_compactSpace_of_t2Space 📖mathematicalFiniteIsScalarTower.left
isNilpotent_jacobson_bot
IsScalarTower.right
instFinitePrimeSpectrum
le_bot_iff
Ideal.zero_eq_bot
pow_le_pow_left'
Submodule.instMulLeftMono
Submodule.instMulRightMono
Ideal.jacobson_bot
Ring.jacobson_eq_sInf_isMaximal
le_sInf_iff
LE.le.trans
Ideal.prod_le_inf
Finset.inf_le
Ideal.IsMaximal.isPrime
Ideal.finite_quotient_prod
IsNoetherian.noetherian
instIsNoetherianRingOfIsArtinianRing
DivisionRing.finite_of_compactSpace_of_t2Space
isMaximal_of_isPrime
PrimeSpectrum.isPrime
topologicalRing_quotient
instCompactSpaceQuotientIdeal
T25Space.t2Space
T3Space.t25Space
Submodule.t3_quotient_of_isClosed
IsTopologicalRing.to_topologicalAddGroup
IsNoetherianRing.isClosed_ideal
Ideal.finite_quotient_pow
Finite.of_equiv
Ideal.instIsTwoSidedBot

IsDedekindDomain

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_iff 📖mathematicalIsField
CommSemiring.toSemiring
CommRing.toCommSemiring
IsOpen
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
discreteTopology_iff_isOpen_singleton_zero
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
Finite.isField_of_domain
toIsDomain
finite_of_compact_of_discrete
isOpen_of_ne_bot
isOpen_of_ne_bot 📖mathematicalIsOpen
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.finprod_heightOneSpectrum_factorization
Ideal.finite_mulSupport
finprod_eq_finset_prod_of_mulSupport_subset
Set.Finite.coe_toFinset
Set.instReflSubset
AddSubgroup.isOpen_of_isClosed_of_finiteIndex
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
AddSubgroup.finiteIndex_of_finite_quotient
Ideal.finite_quotient_prod
IsNoetherian.noetherian
IsDedekindDomainDvr.toIsNoetherian
toIsDomain
isDedekindDomainDvr
Ideal.finite_quotient_pow
DivisionRing.finite_of_compactSpace_of_t2Space
HeightOneSpectrum.isMaximal
topologicalRing_quotient
instCompactSpaceQuotientIdeal
T25Space.t2Space
T3Space.t25Space
Submodule.t3_quotient_of_isClosed
IsTopologicalRing.to_topologicalAddGroup
IsNoetherianRing.isClosed_ideal
Ideal.uniqueFactorizationMonoid

IsDiscreteValuationRing

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_iff 📖mathematicalIsOpen
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsDedekindDomain.isOpen_iff
IsPrincipalIdealRing.isDedekindDomain
toIsPrincipalIdealRing
not_isField

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
finite_residueField_of_compactSpace 📖mathematicalFinite
ResidueField
DivisionRing.finite_of_compactSpace_of_t2Space
maximalIdeal.isMaximal
topologicalRing_quotient
instCompactSpaceQuotientIdeal
T25Space.t2Space
T3Space.t25Space
Submodule.t3_quotient_of_isClosed
IsTopologicalRing.to_topologicalAddGroup
IsNoetherianRing.isClosed_ideal
isOpen_iff_finite_quotient 📖mathematicalIsOpen
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Finite
HasQuotient.Quotient
Ideal.instHasQuotient_1
AddSubgroup.quotient_finite_of_isOpen
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
exists_maximalIdeal_pow_le_of_isArtinianRing_quotient
isArtinian_of_fg_of_artinian'
Finite.to_wellFoundedLT
Finite.of_fintype
Module.Finite.self
AddSubgroup.isOpen_mono
IsScalarTower.right
isOpen_maximalIdeal_pow
isOpen_maximalIdeal 📖mathematicalIsOpen
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
maximalIdeal
Ideal.isOpen_of_isMaximal
maximalIdeal.isMaximal
isOpen_maximalIdeal_pow 📖mathematicalIsOpen
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
maximalIdeal
Ideal.isOpen_pow_of_isMaximal
maximalIdeal.isMaximal

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteQuotientIdealOfIsMaximal 📖mathematicalFinite
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
DivisionRing.finite_of_compactSpace_of_t2Space
topologicalRing_quotient
instCompactSpaceQuotientIdeal
T25Space.t2Space
T3Space.t25Space
Submodule.t3_quotient_of_isClosed
IsTopologicalRing.to_topologicalAddGroup
IsNoetherianRing.isClosed_ideal

---

← Back to Index