Documentation Verification Report

Semigroup

📁 Source: Mathlib/Topology/Algebra/Semigroup.lean

Statistics

MetricCount
DefinitionsSemigroup
1
Theoremsexists_idempotent_in_compact_add_subsemigroup, exists_idempotent_in_compact_subsemigroup, exists_idempotent_of_compact_t2_of_continuous_add_left, exists_idempotent_of_compact_t2_of_continuous_mul_left
4
Total5

(root)

Definitions

NameCategoryTheorems
Semigroup 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
exists_idempotent_in_compact_add_subsemigroup 📖Continuous
AddSemigroup.toAdd
Set.Nonempty
IsCompact
Set
Set.instMembership
add_assoc
Continuous.comp
continuous_subtype_val
exists_idempotent_of_compact_t2_of_continuous_add_left
nonempty_subtype
isCompact_iff_compactSpace
instT2SpaceSubtype
exists_idempotent_in_compact_subsemigroup 📖Continuous
Semigroup.toMul
Set.Nonempty
IsCompact
Set
Set.instMembership
mul_assoc
Continuous.comp
continuous_subtype_val
exists_idempotent_of_compact_t2_of_continuous_mul_left
nonempty_subtype
isCompact_iff_compactSpace
instT2SpaceSubtype
exists_idempotent_of_compact_t2_of_continuous_add_left 📖Continuous
AddSemigroup.toAdd
zorn_superset
isClosed_sInter
Set.eq_empty_or_nonempty
Set.sInter_empty
Set.univ_nonempty
Set.sInter_eq_iInter
IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
Set.Nonempty.coe_sort
DirectedOn.directed_val
IsChain.directedOn
instReflGe
IsChain.symm
Subtype.prop
IsClosed.isCompact
Set.mem_sInter
Set.sInter_subset_of_mem
Minimal.prop
Minimal.eq_of_subset
Continuous.isClosedMap
add_assoc
IsClosed.inter
IsClosed.preimage
T1Space.t1
T2Space.t1Space
Set.mem_setOf_eq
Set.inter_subset_left
exists_idempotent_of_compact_t2_of_continuous_mul_left 📖Continuous
Semigroup.toMul
zorn_superset
isClosed_sInter
Set.eq_empty_or_nonempty
Set.sInter_empty
Set.univ_nonempty
Set.sInter_eq_iInter
IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
Set.Nonempty.coe_sort
DirectedOn.directed_val
IsChain.directedOn
instReflGe
IsChain.symm
Subtype.prop
IsClosed.isCompact
Set.mem_sInter
Set.sInter_subset_of_mem
Minimal.prop
Minimal.eq_of_subset
Continuous.isClosedMap
mul_assoc
IsClosed.inter
IsClosed.preimage
T1Space.t1
T2Space.t1Space
Set.mem_setOf_eq
Set.inter_subset_left

---

← Back to Index