Documentation Verification Report

Support

πŸ“ Source: Mathlib/Topology/Algebra/Support.lean

Statistics

MetricCount
DefinitionsHasCompactMulSupport, HasCompactSupport, Support, mulTSupport, tsupport
5
Theoremscontinuous_of_mulTSupport_subset, continuous_of_tsupport_subset, comp_homeomorph, comp_isClosedEmbedding, comp_left, compβ‚‚_left, continuous_extend_one, extend_one, intro, intro', inv, isCompact, isCompact_preimage, isCompact_range, is_one_at_infty, mono, mono', mul, mulTSupport_extend_one, mulTSupport_extend_one_subset, of_compactSpace, of_mulSupport_subset_isCompact, one, abs, add, comp_homeomorph, comp_isClosedEmbedding, comp_left, compβ‚‚_left, continuous_extend_zero, div, extend_zero, intro, intro', isCompact, isCompact_preimage, isCompact_range, is_zero_at_infty, mono, mono', mul_left, mul_right, neg, of_compactSpace, of_support_subset_isCompact, smul_left, smul_right, sub, tsupport_extend_zero, tsupport_extend_zero_subset, zero, exists_finset_nhds_mulSupport_subset, exists_finset_nhds_support_subset, smul_left, smul_right, continuous_of_mulTSupport, continuous_of_tsupport, exists_compact_iff_hasCompactMulSupport, exists_compact_iff_hasCompactSupport, hasCompactMulSupport_comp_left, hasCompactMulSupport_def, hasCompactMulSupport_iff_eventuallyEq, hasCompactSupport_comp_left, hasCompactSupport_def, hasCompactSupport_iff_eventuallyEq, image_eq_one_of_notMem_mulTSupport, image_eq_zero_of_notMem_tsupport, isClosed_mulTSupport, isClosed_tsupport, isCompact_range_of_mulSupport_subset_isCompact, isCompact_range_of_support_subset_isCompact, locallyFinite_mulSupport_iff, locallyFinite_support_iff, mulTSupport_binop_subset, mulTSupport_comp_eq, mulTSupport_comp_eq_of_range_subset, mulTSupport_comp_eq_preimage, mulTSupport_comp_subset, mulTSupport_comp_subset_preimage, mulTSupport_div, mulTSupport_eq_empty_iff, mulTSupport_fun_inv, mulTSupport_fun_one, mulTSupport_inv, mulTSupport_mul, mulTSupport_mul_inv, mulTSupport_one, mulTSupport_pow, mulTSupport_subset_comp, notMem_mulTSupport_iff_eventuallyEq, notMem_tsupport_iff_eventuallyEq, range_eq_image_mulTSupport_or, range_eq_image_tsupport_or, range_subset_insert_image_mulTSupport, range_subset_insert_image_tsupport, subset_mulTSupport, subset_tsupport, tsupport_add, tsupport_add_neg, tsupport_binop_subset, tsupport_comp_eq, tsupport_comp_eq_of_range_subset, tsupport_comp_eq_preimage, tsupport_comp_subset, tsupport_comp_subset_preimage, tsupport_eq_empty_iff, tsupport_fun_neg, tsupport_fun_zero, tsupport_mul_subset_left, tsupport_mul_subset_right, tsupport_neg, tsupport_nsmul, tsupport_smul_subset_left, tsupport_smul_subset_right, tsupport_sub, tsupport_subset_comp, tsupport_zero
117
Total122

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_of_mulTSupport_subset πŸ“–mathematicalContinuousOn
IsOpen
Set
Set.instHasSubset
mulTSupport
Continuousβ€”continuous_of_mulTSupport
IsOpen.continuousOn_iff
continuous_of_tsupport_subset πŸ“–mathematicalContinuousOn
IsOpen
Set
Set.instHasSubset
tsupport
Continuousβ€”continuous_of_tsupport
IsOpen.continuousOn_iff

HasCompactMulSupport

Theorems

NameKindAssumesProvesValidatesDepends On
comp_homeomorph πŸ“–mathematicalHasCompactMulSupportDFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”comp_isClosedEmbedding
Homeomorph.isClosedEmbedding
comp_isClosedEmbedding πŸ“–β€”HasCompactMulSupport
Topology.IsClosedEmbedding
β€”β€”hasCompactMulSupport_def
Function.mulSupport_comp_eq_preimage
IsCompact.of_isClosed_subset
Topology.IsClosedEmbedding.isCompact_preimage
isClosed_closure
Topology.IsEmbedding.closure_eq_preimage_closure_image
Topology.IsClosedEmbedding.isEmbedding
Set.preimage_mono
closure_mono
Set.image_preimage_subset
comp_left πŸ“–β€”HasCompactMulSupportβ€”β€”mono
Function.mulSupport_comp_subset
compβ‚‚_left πŸ“–β€”HasCompactMulSupportβ€”β€”hasCompactMulSupport_iff_eventuallyEq
Filter.mp_mem
Filter.univ_mem'
continuous_extend_one πŸ“–mathematicalIsOpen
Continuous
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
HasCompactMulSupport
Function.extend
Pi.instOne
β€”continuous_of_mulTSupport
Subtype.coe_image_subset
mulTSupport_extend_one_subset
continuous_subtype_val
Topology.IsOpenEmbedding.continuousAt_iff
IsOpen.isOpenEmbedding_subtypeVal
Function.extend_comp
Subtype.val_injective
Continuous.continuousAt
extend_one πŸ“–mathematicalHasCompactMulSupport
Continuous
Function.extend
Pi.instOne
β€”of_mulSupport_subset_isCompact
T2Space.r1Space
IsCompact.image
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
mulTSupport_extend_one_subset
intro πŸ“–mathematicalIsCompactHasCompactMulSupportβ€”exists_compact_iff_hasCompactMulSupport
intro' πŸ“–mathematicalIsCompactHasCompactMulSupportβ€”IsClosed.closure_eq
closure_mono
Function.mulSupport_subset_iff'
IsCompact.of_isClosed_subset
isClosed_mulTSupport
inv πŸ“–mathematicalHasCompactMulSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Pi.instInv
InvOneClass.toInv
β€”Function.mulSupport_inv
isCompact πŸ“–mathematicalHasCompactMulSupportIsCompact
mulTSupport
β€”β€”
isCompact_preimage πŸ“–mathematicalHasCompactMulSupport
Continuous
Set
Set.instMembership
IsCompact
Set.preimage
β€”IsCompact.of_isClosed_subset
IsClosed.preimage
subset_mulTSupport
isCompact_range πŸ“–mathematicalHasCompactMulSupport
Continuous
IsCompact
Set.range
β€”isCompact_range_of_mulSupport_subset_isCompact
subset_mulTSupport
is_one_at_infty πŸ“–mathematicalHasCompactMulSupportFilter.Tendsto
Filter.cocompact
nhds
β€”Filter.mem_map
Filter.mem_cocompact'
isCompact
Set.compl_subset_comm
Set.mem_preimage
image_eq_one_of_notMem_mulTSupport
mem_of_mem_nhds
mono πŸ“–β€”HasCompactMulSupport
Set
Set.instHasSubset
Function.mulSupport
β€”β€”mono'
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
mono' πŸ“–β€”HasCompactMulSupport
Set
Set.instHasSubset
Function.mulSupport
mulTSupport
β€”β€”IsCompact.of_isClosed_subset
isClosed_closure
closure_minimal
mul πŸ“–mathematicalHasCompactMulSupport
MulOne.toOne
MulOneClass.toMulOne
Pi.instMul
MulOne.toMul
β€”compβ‚‚_left
mul_one
mulTSupport_extend_one πŸ“–mathematicalHasCompactMulSupport
Continuous
mulTSupport
Function.extend
Pi.instOne
Set.image
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
mulTSupport_extend_one_subset
HasSubset.Subset.trans
Set.instIsTransSubset
image_closure_subset_closure_image
closure_mono
Eq.superset
Set.instReflSubset
Function.mulSupport_extend_one
mulTSupport_extend_one_subset πŸ“–mathematicalHasCompactMulSupport
Continuous
Set
Set.instHasSubset
mulTSupport
Function.extend
Pi.instOne
Set.image
β€”IsClosed.closure_subset_iff
IsCompact.isClosed
IsCompact.image
HasSubset.Subset.trans
Set.instIsTransSubset
Function.mulSupport_extend_one_subset
Set.image_mono
subset_closure
of_compactSpace πŸ“–mathematicalβ€”HasCompactMulSupportβ€”IsCompact.of_isClosed_subset
isCompact_univ
isClosed_mulTSupport
Set.subset_univ
of_mulSupport_subset_isCompact πŸ“–mathematicalIsCompact
Set
Set.instHasSubset
Function.mulSupport
HasCompactMulSupportβ€”IsCompact.closure_of_subset
one πŸ“–mathematicalβ€”HasCompactMulSupport
Pi.instOne
β€”mulTSupport_one

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
abs πŸ“–mathematicalHasCompactSupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
abs
Pi.instLattice
Pi.addGroup
β€”comp_left
abs_zero
add πŸ“–mathematicalHasCompactSupport
AddZero.toZero
AddZeroClass.toAddZero
Pi.instAdd
AddZero.toAdd
β€”compβ‚‚_left
add_zero
comp_homeomorph πŸ“–mathematicalHasCompactSupportDFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”comp_isClosedEmbedding
Homeomorph.isClosedEmbedding
comp_isClosedEmbedding πŸ“–β€”HasCompactSupport
Topology.IsClosedEmbedding
β€”β€”hasCompactSupport_def
Function.support_comp_eq_preimage
IsCompact.of_isClosed_subset
Topology.IsClosedEmbedding.isCompact_preimage
isClosed_closure
Topology.IsEmbedding.closure_eq_preimage_closure_image
Topology.IsClosedEmbedding.isEmbedding
Set.preimage_mono
closure_mono
Set.image_preimage_subset
comp_left πŸ“–β€”HasCompactSupportβ€”β€”mono
Function.support_comp_subset
compβ‚‚_left πŸ“–β€”HasCompactSupportβ€”β€”hasCompactSupport_iff_eventuallyEq
Filter.mp_mem
Filter.univ_mem'
continuous_extend_zero πŸ“–mathematicalIsOpen
Continuous
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
HasCompactSupport
Function.extend
Pi.instZero
β€”continuous_of_tsupport
Subtype.coe_image_subset
tsupport_extend_zero_subset
continuous_subtype_val
Topology.IsOpenEmbedding.continuousAt_iff
IsOpen.isOpenEmbedding_subtypeVal
Function.extend_comp
Subtype.val_injective
Continuous.continuousAt
div πŸ“–mathematicalHasCompactMulSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Pi.instDiv
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
β€”HasCompactMulSupport.mul
HasCompactMulSupport.inv
div_eq_mul_inv
extend_zero πŸ“–mathematicalHasCompactSupport
Continuous
Function.extend
Pi.instZero
β€”of_support_subset_isCompact
T2Space.r1Space
IsCompact.image
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
tsupport_extend_zero_subset
intro πŸ“–mathematicalIsCompactHasCompactSupportβ€”exists_compact_iff_hasCompactSupport
intro' πŸ“–mathematicalIsCompactHasCompactSupportβ€”IsClosed.closure_eq
closure_mono
Function.support_subset_iff'
IsCompact.of_isClosed_subset
isClosed_tsupport
isCompact πŸ“–mathematicalHasCompactSupportIsCompact
tsupport
β€”β€”
isCompact_preimage πŸ“–mathematicalHasCompactSupport
Continuous
Set
Set.instMembership
IsCompact
Set.preimage
β€”IsCompact.of_isClosed_subset
IsClosed.preimage
subset_tsupport
Function.mem_support
Set.mem_preimage
isCompact_range πŸ“–mathematicalHasCompactSupport
Continuous
IsCompact
Set.range
β€”isCompact_range_of_support_subset_isCompact
subset_tsupport
is_zero_at_infty πŸ“–mathematicalHasCompactSupportFilter.Tendsto
Filter.cocompact
nhds
β€”Filter.mem_map
Filter.mem_cocompact'
isCompact
Set.compl_subset_comm
Set.mem_preimage
image_eq_zero_of_notMem_tsupport
mem_of_mem_nhds
mono πŸ“–β€”HasCompactSupport
Set
Set.instHasSubset
Function.support
β€”β€”mono'
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
mono' πŸ“–β€”HasCompactSupport
Set
Set.instHasSubset
Function.support
tsupport
β€”β€”IsCompact.of_isClosed_subset
isClosed_closure
closure_minimal
mul_left πŸ“–mathematicalHasCompactSupport
MulZeroClass.toZero
Pi.instMul
MulZeroClass.toMul
β€”hasCompactSupport_iff_eventuallyEq
Filter.Eventually.mono
MulZeroClass.mul_zero
mul_right πŸ“–mathematicalHasCompactSupport
MulZeroClass.toZero
Pi.instMul
MulZeroClass.toMul
β€”hasCompactSupport_iff_eventuallyEq
Filter.Eventually.mono
MulZeroClass.zero_mul
neg πŸ“–mathematicalHasCompactSupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
Pi.instNeg
NegZeroClass.toNeg
β€”Function.support_neg
of_compactSpace πŸ“–mathematicalβ€”HasCompactSupportβ€”IsCompact.of_isClosed_subset
isCompact_univ
isClosed_tsupport
Set.subset_univ
of_support_subset_isCompact πŸ“–mathematicalIsCompact
Set
Set.instHasSubset
Function.support
HasCompactSupportβ€”IsCompact.closure_of_subset
smul_left πŸ“–mathematicalHasCompactSupportPi.smul'
SMulZeroClass.toSMul
β€”hasCompactSupport_iff_eventuallyEq
Filter.Eventually.mono
smul_zero
smul_right πŸ“–mathematicalHasCompactSupportPi.smul'
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
β€”hasCompactSupport_iff_eventuallyEq
Filter.Eventually.mono
zero_smul
sub πŸ“–mathematicalHasCompactSupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
Pi.instSub
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
β€”add
neg
sub_eq_add_neg
tsupport_extend_zero πŸ“–mathematicalHasCompactSupport
Continuous
tsupport
Function.extend
Pi.instZero
Set.image
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
tsupport_extend_zero_subset
HasSubset.Subset.trans
Set.instIsTransSubset
image_closure_subset_closure_image
closure_mono
Eq.superset
Set.instReflSubset
Function.support_extend_zero
tsupport_extend_zero_subset πŸ“–mathematicalHasCompactSupport
Continuous
Set
Set.instHasSubset
tsupport
Function.extend
Pi.instZero
Set.image
β€”IsClosed.closure_subset_iff
IsCompact.isClosed
IsCompact.image
HasSubset.Subset.trans
Set.instIsTransSubset
Function.support_extend_zero_subset
Set.image_mono
subset_closure
zero πŸ“–mathematicalβ€”HasCompactSupport
Pi.instZero
β€”tsupport_zero
Set.Finite.isCompact
Set.finite_empty

IsDedekindDomain.HeightOneSpectrum

Definitions

NameCategoryTheorems
Support πŸ“–CompOp
1 mathmath: Support.finite

LocallyFinite

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finset_nhds_mulSupport_subset πŸ“–mathematicalLocallyFinite
Function.mulSupport
Set
Set.instHasSubset
mulTSupport
IsOpen
Filter
Filter.instMembership
nhds
Set.iInter
Finset
Finset.instMembership
SetLike.coe
Finset.instSetLike
β€”Filter.inter_mem
Filter.biInter_finset_mem
IsClosed.compl_mem_nhds
isClosed_mulTSupport
Set.notMem_subset
Finset.mem_filter
IsOpen.mem_nhds
Set.inter_subset_right
Set.mem_of_mem_inter_left
Set.inter_assoc
Set.mem_of_mem_inter_right
Set.Finite.coe_toFinset
Finset.subset_coe_filter_of_subset_forall
Mathlib.Tactic.Contrapose.contrapose₁
subset_mulTSupport
Set.iInter_congr_Prop
exists_finset_nhds_support_subset πŸ“–mathematicalLocallyFinite
Function.support
Set
Set.instHasSubset
tsupport
IsOpen
Filter
Filter.instMembership
nhds
Set.iInter
Finset
Finset.instMembership
SetLike.coe
Finset.instSetLike
β€”Filter.inter_mem
Filter.biInter_finset_mem
IsClosed.compl_mem_nhds
isClosed_tsupport
Set.notMem_subset
Finset.mem_filter
IsOpen.mem_nhds
Set.inter_subset_right
Set.mem_of_mem_inter_left
Set.inter_assoc
Set.mem_of_mem_inter_right
Set.Finite.coe_toFinset
Finset.subset_coe_filter_of_subset_forall
Mathlib.Tactic.Contrapose.contrapose₁
Set.mem_compl_iff
subset_tsupport
Set.iInter_congr_Prop
Set.Finite.mem_toFinset
Set.mem_iInter
smul_left πŸ“–mathematicalLocallyFinite
Function.support
Pi.smul'
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
β€”subset
Pi.smul_apply'
zero_smul
smul_right πŸ“–mathematicalLocallyFinite
Function.support
Pi.smul'
SMulZeroClass.toSMul
β€”subset
Pi.smul_apply'
smul_zero

(root)

Definitions

NameCategoryTheorems
HasCompactMulSupport πŸ“–MathDef
9 mathmath: hasCompactMulSupport_def, HasCompactMulSupport.of_mulSupport_subset_isCompact, HasCompactMulSupport.of_compactSpace, HasCompactMulSupport.one, hasCompactMulSupport_comp_left, hasCompactMulSupport_iff_eventuallyEq, HasCompactMulSupport.intro', exists_compact_iff_hasCompactMulSupport, HasCompactMulSupport.intro
HasCompactSupport πŸ“–MathDef
42 mathmath: exists_continuous_sum_one_of_isOpen_isCompact, HasCompactSupport.intro, HasCompactSupport.of_support_subset_isCompact, CompactlySupportedContinuousMap.hasCompactSupport, MeasureTheory.Integrable.exists_hasCompactSupport_lintegral_sub_le, exists_smooth_tsupport_subset, MeasureTheory.MemLp.exist_eLpNorm_sub_le, hasCompactSupport_iff_eventuallyEq, ExistsContDiffBumpBase.w_compact_support, CompactlySupportedContinuousMapClass.hasCompactSupport, ContDiffBump.hasCompactSupport, ContDiffMapSupportedIn.hasCompactSupport, MeasureTheory.Measure.innerRegularWRT_preimage_one_hasCompactSupport_measure_ne_top_of_group, SmoothBumpFunction.hasCompactSupport, exists_continuous_one_zero_of_isCompact, exists_continuous_nonneg_pos, PartitionOfUnity.exists_isSubordinate_of_locallyFinite_t2space, MeasureTheory.Integrable.exists_hasCompactSupport_integral_sub_le, TestFunctionClass.map_hasCompactSupport, MeasureTheory.MemLp.exists_hasCompactSupport_integral_rpow_sub_le, mem_compactlySupported, HasCompactSupport.intro', MeasureTheory.MemLp.exists_hasCompactSupport_eLpNorm_sub_le, exists_compact_iff_hasCompactSupport, hasCompactSupport_def, BumpCovering.exists_isSubordinate_of_locallyFinite_of_prop_t2space, TestFunction.hasCompactSupport', CompactlySupportedContinuousMap.hasCompactSupport', exists_continuous_one_zero_of_isCompact_of_isGΞ΄, HasCompactSupport.of_compactSpace, ContDiffBump.hasCompactSupport_normed, IsCompact.measure_eq_biInf_integral_hasCompactSupport, TestFunction.hasCompactSupport, HasCompactSupport.zero, exists_contDiff_tsupport_subset, ExistsContDiffBumpBase.u_compact_support, MeasureTheory.Lp.dense_hasCompactSupport_contDiff, hasCompactSupport_norm_iff, ContDiffMapSupportedIn.compact_supp, MeasureTheory.Measure.innerRegularWRT_preimage_one_hasCompactSupport_measure_ne_top_of_addGroup, BumpCovering.exists_isSubordinate_hasCompactSupport_of_locallyFinite_t2space, hasCompactSupport_comp_left
mulTSupport πŸ“–CompOp
25 mathmath: mulTSupport_mul_inv, mulTSupport_eq_empty_iff, HasCompactMulSupport.mulTSupport_extend_one_subset, subset_mulTSupport, mulTSupport_mul, HasCompactMulSupport.mulTSupport_extend_one, range_eq_image_mulTSupport_or, HasCompactMulSupport.isCompact, mulTSupport_binop_subset, mulTSupport_fun_inv, range_subset_insert_image_mulTSupport, isClosed_mulTSupport, mulTSupport_subset_comp, mulTSupport_comp_subset_preimage, mulTSupport_comp_eq_of_range_subset, mulTSupport_fun_one, mulTSupport_comp_subset, mulTSupport_pow, mulTSupport_comp_eq_preimage, mulTSupport_inv, mulTSupport_comp_eq, mulTSupport_one, mulTSupport_div, notMem_mulTSupport_iff_eventuallyEq, locallyFinite_mulSupport_iff
tsupport πŸ“–CompOp
67 mathmath: exists_continuous_sum_one_of_isOpen_isCompact, HasCompactSupport.convolution_integrand_bound_left, tsupport_binop_subset, tsupport_fun_zero, exists_smooth_tsupport_subset, subset_tsupport, tsupport_neg, tsupport_comp_eq, SmoothBumpFunction.tsupport_subset_symm_image_closedBall, SmoothBumpFunction.tsupport_subset_chartAt_source, SchwartzMap.tsupport_lineDerivOp_subset, MeasureTheory.setIntegral_tsupport, tsupport_comp_eq_of_range_subset, SmoothBumpFunction.tsupport_mem_nhds, tsupport_mul_subset_left, SmoothBumpFunction.nhds_basis_support, ContDiffMapSupportedIn.tsupport_subset, support_deriv_subset, notMem_tsupport_iff_eventuallyEq, SchwartzMap.tsupport_iteratedLineDerivOp_subset, PartitionOfUnity.locallyFinite_tsupport, BumpCovering.locallyFinite_tsupport, HasCompactSupport.isCompact, locallyFinite_support_iff, tsupport_comp_subset_preimage, tsupport_nsmul, HasCompactSupport.tsupport_extend_zero_subset, TestFunction.tsupport_subset, isClosed_tsupport, support_iteratedFDeriv_subset, SchwartzMap.tsupport_smulLeftCLM_subset, tsupport_fderiv_subset, SchwartzMap.tsupport_fderivCLM_subset, tsupport_iteratedFDeriv_subset, range_eq_image_tsupport_or, ContDiffBump.tsupport_eq, tsupport_comp_eq_preimage, tsupport_subset_comp, tsupport_fun_neg, tsupport_fderiv_apply_subset, exists_continuousMap_one_of_isCompact_subset_isOpen, tsupport_comp_subset, SmoothPartitionOfUnity.finite_tsupport, tsupport_smul_subset_right, SmoothBumpFunction.tsupport_subset_extChartAt_source, SchwartzMap.tsupport_derivCLM_subset, SmoothPartitionOfUnity.mem_fintsupport_iff, HasCompactSupport.tsupport_extend_zero, PartitionOfUnity.finite_tsupport, tsupport_add, exists_contDiff_tsupport_subset, tsupport_mul_subset_right, PartitionOfUnity.mem_fintsupport_iff, RealRMK.range_cut_partition, ContDiffBump.tsupport_normed_eq, exists_tsupport_one_of_isOpen_isClosed, TestFunctionClass.tsupport_map_subset, support_fderiv_subset, TestFunction.tsupport_subset', tsupport_zero, tsupport_sub, SmoothBumpFunction.nhds_basis_tsupport, HasCompactSupport.convolution_integrand_bound_right, tsupport_add_neg, tsupport_eq_empty_iff, tsupport_smul_subset_left, range_subset_insert_image_tsupport

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_of_mulTSupport πŸ“–mathematicalContinuousAtContinuousβ€”continuous_iff_continuousAt
em
ContinuousAt.congr
continuousAt_const
Filter.EventuallyEq.symm
notMem_mulTSupport_iff_eventuallyEq
continuous_of_tsupport πŸ“–mathematicalContinuousAtContinuousβ€”continuous_iff_continuousAt
em
ContinuousAt.congr
continuousAt_const
Filter.EventuallyEq.symm
notMem_tsupport_iff_eventuallyEq
exists_compact_iff_hasCompactMulSupport πŸ“–mathematicalβ€”IsCompact
HasCompactMulSupport
β€”β€”
exists_compact_iff_hasCompactSupport πŸ“–mathematicalβ€”IsCompact
HasCompactSupport
β€”Function.notMem_support
Set.mem_compl_iff
Set.compl_subset_compl
hasCompactSupport_def
exists_isCompact_superset_iff
hasCompactMulSupport_comp_left πŸ“–mathematicalβ€”HasCompactMulSupportβ€”Function.mulSupport_comp_eq
hasCompactMulSupport_def πŸ“–mathematicalβ€”HasCompactMulSupport
IsCompact
closure
Function.mulSupport
β€”β€”
hasCompactMulSupport_iff_eventuallyEq πŸ“–mathematicalβ€”HasCompactMulSupport
Filter.EventuallyEq
Filter.coclosedCompact
Pi.instOne
β€”Filter.mem_coclosedCompact_iff
hasCompactSupport_comp_left πŸ“–mathematicalβ€”HasCompactSupportβ€”hasCompactSupport_def
Function.support_comp_eq
hasCompactSupport_def πŸ“–mathematicalβ€”HasCompactSupport
IsCompact
closure
Function.support
β€”β€”
hasCompactSupport_iff_eventuallyEq πŸ“–mathematicalβ€”HasCompactSupport
Filter.EventuallyEq
Filter.coclosedCompact
Pi.instZero
β€”Filter.mem_coclosedCompact_iff
image_eq_one_of_notMem_mulTSupport πŸ“–β€”Set
Set.instMembership
mulTSupport
β€”β€”Function.mulSupport_subset_iff'
subset_mulTSupport
image_eq_zero_of_notMem_tsupport πŸ“–β€”Set
Set.instMembership
tsupport
β€”β€”Function.support_subset_iff'
subset_tsupport
isClosed_mulTSupport πŸ“–mathematicalβ€”IsClosed
mulTSupport
β€”isClosed_closure
isClosed_tsupport πŸ“–mathematicalβ€”IsClosed
tsupport
β€”isClosed_closure
isCompact_range_of_mulSupport_subset_isCompact πŸ“–mathematicalContinuous
IsCompact
Set
Set.instHasSubset
Function.mulSupport
Set.rangeβ€”Function.range_eq_image_or_of_mulSupport_subset
IsCompact.image
IsCompact.insert
isCompact_range_of_support_subset_isCompact πŸ“–mathematicalContinuous
IsCompact
Set
Set.instHasSubset
Function.support
Set.rangeβ€”Function.range_eq_image_or_of_support_subset
IsCompact.image
IsCompact.insert
locallyFinite_mulSupport_iff πŸ“–mathematicalβ€”LocallyFinite
Function.mulSupport
mulTSupport
β€”LocallyFinite.closure
LocallyFinite.subset
subset_closure
locallyFinite_support_iff πŸ“–mathematicalβ€”LocallyFinite
Function.support
tsupport
β€”LocallyFinite.closure
LocallyFinite.subset
subset_closure
mulTSupport_binop_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
mulTSupport
Set.instUnion
β€”HasSubset.Subset.trans
Set.instIsTransSubset
closure_mono
Function.mulSupport_binop_subset
Eq.subset
Set.instReflSubset
closure_union
mulTSupport_comp_eq πŸ“–mathematicalβ€”mulTSupportβ€”mulTSupport.eq_1
Function.mulSupport_comp_eq
mulTSupport_comp_eq_of_range_subset πŸ“–mathematicalβ€”mulTSupportβ€”mulTSupport.eq_1
Function.mulSupport_comp_eq_of_range_subset
mulTSupport_comp_eq_preimage πŸ“–mathematicalβ€”mulTSupport
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Set.preimage
β€”mulTSupport.eq_1
Function.mulSupport_comp_eq_preimage
Homeomorph.preimage_closure
mulTSupport_comp_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
mulTSupport
β€”closure_mono
Function.mulSupport_comp_subset
mulTSupport_comp_subset_preimage πŸ“–mathematicalContinuousSet
Set.instHasSubset
mulTSupport
Set.preimage
β€”mulTSupport.eq_1
Function.mulSupport_comp_eq_preimage
Continuous.closure_preimage_subset
mulTSupport_div πŸ“–mathematicalβ€”Set
Set.instHasSubset
mulTSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
Set.instUnion
β€”mulTSupport_binop_subset
one_div_one
mulTSupport_eq_empty_iff πŸ“–mathematicalβ€”mulTSupport
Set
Set.instEmptyCollection
Pi.instOne
β€”mulTSupport.eq_1
closure_empty_iff
Function.mulSupport_eq_empty_iff
mulTSupport_fun_inv πŸ“–mathematicalβ€”mulTSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
InvOneClass.toInv
β€”Function.mulSupport_fun_inv
mulTSupport_fun_one πŸ“–mathematicalβ€”mulTSupport
Set
Set.instEmptyCollection
β€”mulTSupport.eq_1
Function.mulSupport_fun_one
closure_empty
mulTSupport_inv πŸ“–mathematicalβ€”mulTSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Pi.instInv
InvOneClass.toInv
β€”mulTSupport_fun_inv
mulTSupport_mul πŸ“–mathematicalβ€”Set
Set.instHasSubset
mulTSupport
MulOne.toOne
MulOneClass.toMulOne
MulOne.toMul
Set.instUnion
β€”mulTSupport_binop_subset
mul_one
mulTSupport_mul_inv πŸ“–mathematicalβ€”Set
Set.instHasSubset
mulTSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
InvOneClass.toInv
Set.instUnion
β€”mulTSupport_binop_subset
inv_one
mul_one
mulTSupport_one πŸ“–mathematicalβ€”mulTSupport
Pi.instOne
Set
Set.instEmptyCollection
β€”mulTSupport.eq_1
Function.mulSupport_one
closure_empty
mulTSupport_pow πŸ“–mathematicalβ€”Set
Set.instHasSubset
mulTSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPow
β€”closure_mono
Function.mulSupport_pow
mulTSupport_subset_comp πŸ“–mathematicalβ€”Set
Set.instHasSubset
mulTSupport
β€”closure_mono
Function.mulSupport_subset_comp
notMem_mulTSupport_iff_eventuallyEq πŸ“–mathematicalβ€”Set
Set.instMembership
mulTSupport
Filter.EventuallyEq
nhds
Pi.instOne
β€”β€”
notMem_tsupport_iff_eventuallyEq πŸ“–mathematicalβ€”Set
Set.instMembership
tsupport
Filter.EventuallyEq
nhds
Pi.instZero
β€”mem_closure_iff_nhds
Set.not_nonempty_iff_eq_empty
Set.disjoint_iff_inter_eq_empty
Function.disjoint_support_iff
Filter.eventuallyEq_iff_exists_mem
range_eq_image_mulTSupport_or πŸ“–mathematicalβ€”Set.range
Set.image
mulTSupport
Set
Set.instInsert
β€”WCovBy.eq_or_eq
Set.wcovBy_insert
Set.image_subset_range
range_subset_insert_image_mulTSupport
range_eq_image_tsupport_or πŸ“–mathematicalβ€”Set.range
Set.image
tsupport
Set
Set.instInsert
β€”WCovBy.eq_or_eq
Set.wcovBy_insert
Set.image_subset_range
range_subset_insert_image_tsupport
range_subset_insert_image_mulTSupport πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.range
Set.instInsert
Set.image
mulTSupport
β€”Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
subset_refl
Set.instReflSubset
Set.insert_subset_insert
Set.image_mono
subset_mulTSupport
Function.range_subset_insert_image_mulSupport
range_subset_insert_image_tsupport πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.range
Set.instInsert
Set.image
tsupport
β€”Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
subset_refl
Set.instReflSubset
Set.insert_subset_insert
Set.image_mono
subset_tsupport
Function.range_subset_insert_image_support
subset_mulTSupport πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.mulSupport
mulTSupport
β€”subset_closure
subset_tsupport πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.support
tsupport
β€”subset_closure
tsupport_add πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
AddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
Set.instUnion
β€”tsupport_binop_subset
add_zero
tsupport_add_neg πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
NegZeroClass.toNeg
Set.instUnion
β€”tsupport_binop_subset
neg_zero
add_zero
tsupport_binop_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
Set.instUnion
β€”HasSubset.Subset.trans
Set.instIsTransSubset
closure_mono
Function.support_binop_subset
Eq.subset
Set.instReflSubset
closure_union
tsupport_comp_eq πŸ“–mathematicalβ€”tsupportβ€”tsupport.eq_1
Function.support_comp_eq
tsupport_comp_eq_of_range_subset πŸ“–mathematicalβ€”tsupportβ€”tsupport.eq_1
Function.support_comp_eq_of_range_subset
tsupport_comp_eq_preimage πŸ“–mathematicalβ€”tsupport
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Set.preimage
β€”tsupport.eq_1
Function.support_comp_eq_preimage
Homeomorph.preimage_closure
tsupport_comp_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
β€”closure_mono
Function.support_comp_subset
tsupport_comp_subset_preimage πŸ“–mathematicalContinuousSet
Set.instHasSubset
tsupport
Set.preimage
β€”tsupport.eq_1
Function.support_comp_eq_preimage
Continuous.closure_preimage_subset
tsupport_eq_empty_iff πŸ“–mathematicalβ€”tsupport
Set
Set.instEmptyCollection
Pi.instZero
β€”tsupport.eq_1
closure_empty_iff
Function.support_eq_empty_iff
tsupport_fun_neg πŸ“–mathematicalβ€”tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
NegZeroClass.toNeg
β€”Function.support_fun_neg
tsupport_fun_zero πŸ“–mathematicalβ€”tsupport
Set
Set.instEmptyCollection
β€”tsupport.eq_1
Function.support_fun_zero
closure_empty
tsupport_mul_subset_left πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
MulZeroClass.toZero
MulZeroClass.toMul
β€”closure_mono
Function.support_mul_subset_left
tsupport_mul_subset_right πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
MulZeroClass.toZero
MulZeroClass.toMul
β€”closure_mono
Function.support_mul_subset_right
tsupport_neg πŸ“–mathematicalβ€”tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
Pi.instNeg
NegZeroClass.toNeg
β€”tsupport_fun_neg
tsupport_nsmul πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMul
β€”closure_mono
Function.support_nsmul
tsupport_smul_subset_left πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
β€”closure_mono
Function.support_smul_subset_left
tsupport_smul_subset_right πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
SMulZeroClass.toSMul
β€”closure_mono
Function.support_smul_subset_right
tsupport_sub πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
Set.instUnion
β€”tsupport_binop_subset
zero_sub_zero
tsupport_subset_comp πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
β€”closure_mono
Function.support_subset_comp
tsupport_zero πŸ“–mathematicalβ€”tsupport
Pi.instZero
Set
Set.instEmptyCollection
β€”tsupport.eq_1
Function.support_zero
closure_empty

---

← Back to Index