Documentation Verification Report

UniformField

📁 Source: Mathlib/Topology/Algebra/UniformField.lean

Statistics

MetricCount
DefinitionsCompletableTopField, hatInv, instField, instInvCompletion
4
Theoremsnice, toT0Space, completableTopField, completableTopField, coe_inv, continuous_hatInv, hatInv_extends, instIsTopologicalDivisionRing, instNontrivialOfT0Space, mul_hatInv_cancel, completableTopField_of_complete
11
Total15

CompletableTopField

Theorems

NameKindAssumesProvesValidatesDepends On
nice 📖mathematicalCauchy
Filter
Filter.instInf
nhds
UniformSpace.toTopologicalSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Bot.bot
Filter.instBot
Filter.map
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
toT0Space 📖mathematicalT0Space
UniformSpace.toTopologicalSpace

IsUniformInducing

Theorems

NameKindAssumesProvesValidatesDepends On
completableTopField 📖mathematicalIsUniformInducing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
CompletableTopFieldcauchy_map_iff
map_inv₀
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Filter.map_comm
CompletableTopField.nice
Filter.push_pull'
map_zero
MonoidWithZeroHomClass.toZeroHomClass
Topology.IsInducing.nhds_eq_comap
isInducing
Filter.map_bot

Subfield

Theorems

NameKindAssumesProvesValidatesDepends On
completableTopField 📖mathematicalCompletableTopField
Subfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
toField
instUniformSpaceSubtype
Subtype.t0Space
CompletableTopField.toT0Space
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_subtype_val
IsUniformInducing.cauchy_map_iff
Filter.map_comm
CompletableTopField.nice
Filter.push_pull'
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Topology.IsInducing.nhds_eq_comap
IsUniformInducing.isInducing
Filter.map_bot

UniformSpace.Completion

Definitions

NameCategoryTheorems
hatInv 📖CompOp
3 mathmath: mul_hatInv_cancel, continuous_hatInv, hatInv_extends
instField 📖CompOp
42 mathmath: NumberField.FinitePlace.mk_apply, PadicComplex.coe_eq, IsDedekindDomain.HeightOneSpectrum.instFaithfulSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, NumberField.FinitePlace.norm_def', IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers, NumberField.FinitePlace.embedding_apply, PadicComplex.norm_def, IsDedekindDomain.HeightOneSpectrum.adicCompletion.instIsScalarTower', NumberField.FinitePlace.norm_embedding_eq, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.integers, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, IsDedekindDomain.HeightOneSpectrum.algebraMap_adicCompletionIntegers_apply, IsDedekindDomain.HeightOneSpectrum.coe_smul_adicCompletionIntegers, IsDedekindDomain.HeightOneSpectrum.coe_algebraMap_mem, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, NumberField.FinitePlace.norm_lt_one_iff_mem, IsDedekindDomain.HeightOneSpectrum.instIsTorsionFreeSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, PadicInt.coe_adicCompletionIntegersEquiv_apply, NumberField.FinitePlace.norm_def_int, instIsTopologicalDivisionRing, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation, IsDedekindDomain.HeightOneSpectrum.coe_mem_adicCompletionIntegers, LaurentSeries.powerSeries_ext_subring, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, LaurentSeries.powerSeriesRingEquiv_coe_apply, instIsDiscreteValuationRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, NumberField.FinitePlace.norm_eq_one_iff_notMem, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.isUnit_iff_valued_eq_one, instIsPrincipalIdealRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, NumberField.FinitePlace.norm_le_one, LaurentSeries.mem_integers_of_powerSeries, IsDedekindDomain.HeightOneSpectrum.algebraMap_adicCompletion, IsDedekindDomain.HeightOneSpectrum.adicCompletion.mul_nonZeroDivisor_mem_adicCompletionIntegers, PadicComplexInt.integers, NumberField.FinitePlace.norm_def, IsDedekindDomain.HeightOneSpectrum.notMem_adicCompletionIntegers
instInvCompletion 📖CompOp
1 mathmath: coe_inv

Theorems

NameKindAssumesProvesValidatesDepends On
coe_inv 📖mathematicalUniformSpace.Completion
instInvCompletion
coe'
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
inv_zero
Nat.cast_zero
IsDenseEmbedding.injective
isDenseEmbedding_coe
CompletableTopField.toT0Space
hatInv_extends
continuous_hatInv 📖mathematicalContinuousAt
UniformSpace.Completion
UniformSpace.toTopologicalSpace
uniformSpace
hatInv
IsDenseInducing.continuousAt_extend
instT3Space
t0Space
UniformSpace.to_regularSpace
isDenseInducing_coe
Filter.mem_of_superset
compl_singleton_mem_nhds
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
CompleteSpace.complete
completeSpace
Filter.map_map
Cauchy.map
CompletableTopField.nice
Cauchy.comap
cauchy_nhds
comap_coe_eq_uniformity
le_refl
IsDenseInducing.comap_nhds_neBot
Set.mem_compl_singleton_iff
eq_of_nhds_neBot
Filter.neBot_iff
IsDenseInducing.nhds_eq_comap
Filter.comap_inf
Nat.cast_zero
Filter.comap_bot
uniformContinuous_coe
hatInv_extends 📖mathematicalhatInv
coe'
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
IsDenseInducing.extend_eq_at
T25Space.t2Space
T3Space.t25Space
instT3Space
t0Space
UniformSpace.to_regularSpace
isDenseInducing_coe
ContinuousAt.comp
Continuous.continuousAt
continuous_coe
ContinuousInv₀.continuousAt_inv₀
IsTopologicalDivisionRing.toContinuousInv₀
instIsTopologicalDivisionRing 📖mathematicalIsTopologicalDivisionRing
UniformSpace.Completion
Field.toDivisionRing
instField
UniformSpace.toTopologicalSpace
uniformSpace
topologicalRing
Filter.mem_of_superset
compl_singleton_mem_nhds
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
t0Space
IsTopologicalAddGroup.regularSpace
IsTopologicalRing.to_topologicalAddGroup
IsTopologicalDivisionRing.toIsTopologicalRing
Set.mem_compl_singleton_iff
ContinuousAt.congr
continuous_hatInv
instNontrivialOfT0Space 📖mathematicalNontrivial
UniformSpace.Completion
Function.Injective.nontrivial
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
IsUniformEmbedding.injective
isUniformEmbedding_coe
mul_hatInv_cancel 📖mathematicalUniformSpace.Completion
mul
DivisionRing.toRing
Field.toDivisionRing
hatInv
one
ContinuousAt.fun_mul
instContinuousMul
IsTopologicalDivisionRing.toIsTopologicalRing
continuousAt_id'
continuous_hatInv
IsDenseInducing.dense
isDenseInducing_coe
mem_closure_of_mem_closure_union
Set.image_union
Set.union_compl_self
Set.image_univ
Set.image_singleton
compl_singleton_mem_nhds
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
t0Space
IsTopologicalAddGroup.regularSpace
IsTopologicalRing.to_topologicalAddGroup
topologicalRing
mem_closure_image
Set.image_image
Set.mem_singleton_iff
hatInv_extends
Set.mem_compl_singleton_iff
coe_mul
mul_inv_cancel₀
coe_one
closure_mono
closure_singleton

(root)

Definitions

NameCategoryTheorems
CompletableTopField 📖CompData
5 mathmath: IsUniformInducing.completableTopField, NormedField.instCompletableTopField, Valued.completable, Subfield.completableTopField, completableTopField_of_complete

Theorems

NameKindAssumesProvesValidatesDepends On
completableTopField_of_complete 📖mathematicalCompletableTopFieldCompleteSpace.complete
Filter.NeBot.ne
inf_eq_right
Filter.Tendsto.cauchy_map
Filter.map_mono
ContinuousInv₀.continuousAt_inv₀
IsTopologicalDivisionRing.toContinuousInv₀

---

← Back to Index