Documentation Verification Report

UniformMulAction

πŸ“ Source: Mathlib/Topology/Algebra/UniformMulAction.lean

Statistics

MetricCount
DefinitionsUniformContinuousConstSMul, UniformContinuousConstVAdd, instAddActionOfUniformContinuousConstVAdd, instMulActionOfUniformContinuousConstSMul, instSMul, instVAdd
6
TheoremsuniformContinuousConstSMul_int, uniformContinuousConstSMul_nat, uniformContinuousConstVAdd, vadd_uniformity, to_uniformContinuousConstVAdd, to_uniformContinuousConstSMul, uniformContinuousConstSMul, uniformContinuousConstVAdd, smul_uniformity, uniformContinuousConstSMul, uniformContinuousConstSMul, uniformContinuousConstSMul_op, const_mul', const_smul, const_vadd, div_const', mul_const', op, to_continuousConstSMul, uniformContinuous_const_smul, op, to_continuousConstVAdd, uniformContinuous_const_vadd, coe_smul, coe_vadd, instIsCentralScalar, instIsCentralVAdd, instIsScalarTower, instSMulCommClassOfUniformContinuousConstSMul, instUniformContinuousConstSMul, instUniformContinuousConstVAdd, instVAddAssocClass, instVAddCommClassOfUniformContinuousConstVAdd, smul_def, vadd_def, smul_uniformity, smul_uniformityβ‚€, uniformContinuousConstSMul_of_continuousConstSMul, uniformContinuous_div_const', uniformContinuous_mul_left', uniformContinuous_mul_right', vadd_uniformity
42
Total48

AddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
uniformContinuousConstSMul_int πŸ“–mathematicalβ€”UniformContinuousConstSMul
SubNegMonoid.toZSMul
toSubNegMonoid
β€”uniformContinuous_const_zsmul

AddMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
uniformContinuousConstSMul_nat πŸ“–mathematicalβ€”UniformContinuousConstSMul
toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”uniformContinuous_const_nsmul

AddOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
uniformContinuousConstVAdd πŸ“–mathematicalβ€”UniformContinuousConstVAdd
AddOpposite
instUniformSpaceAddOpposite
instVAdd
β€”UniformContinuous.comp
uniformContinuous_op
UniformContinuous.const_vadd
uniformContinuous_unop

IsAddUnit

Theorems

NameKindAssumesProvesValidatesDepends On
vadd_uniformity πŸ“–mathematicalIsAddUnitHVAdd.hVAdd
Filter
instHVAdd
Filter.instVAddFilter
Prod.instVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
uniformity
β€”exists_neg
UniformContinuousConstVAdd.uniformContinuous_const_vadd
le_antisymm
vadd_vadd
zero_vadd
Filter.vadd_filter_le_vadd_filter

IsUniformAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
to_uniformContinuousConstVAdd πŸ“–mathematicalβ€”UniformContinuousConstVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”UniformContinuous.add
uniformContinuous_const
uniformContinuous_id

IsUniformGroup

Theorems

NameKindAssumesProvesValidatesDepends On
to_uniformContinuousConstSMul πŸ“–mathematicalβ€”UniformContinuousConstSMul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
β€”UniformContinuous.mul
uniformContinuous_const
uniformContinuous_id

IsUniformInducing

Theorems

NameKindAssumesProvesValidatesDepends On
uniformContinuousConstSMul πŸ“–mathematicalIsUniformInducingUniformContinuousConstSMulβ€”uniformContinuous_iff
UniformContinuous.const_smul
uniformContinuous
uniformContinuousConstVAdd πŸ“–mathematicalIsUniformInducing
HVAdd.hVAdd
instHVAdd
UniformContinuousConstVAddβ€”uniformContinuous_iff
UniformContinuous.const_vadd
uniformContinuous

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
smul_uniformity πŸ“–mathematicalIsUnitFilter
Filter.instSMulFilter
Prod.instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
uniformity
β€”exists_right_inv
UniformContinuousConstSMul.uniformContinuous_const_smul
le_antisymm
smul_smul
one_smul
Filter.smul_filter_le_smul_filter

MulOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
uniformContinuousConstSMul πŸ“–mathematicalβ€”UniformContinuousConstSMul
MulOpposite
instUniformSpaceMulOpposite
instSMul
β€”UniformContinuous.comp
uniformContinuous_op
UniformContinuous.const_smul
uniformContinuous_unop

Ring

Theorems

NameKindAssumesProvesValidatesDepends On
uniformContinuousConstSMul πŸ“–mathematicalβ€”UniformContinuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
toAddGroupWithOne
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
toNonAssocRing
β€”uniformContinuousConstSMul_of_continuousConstSMul
IsScalarTower.continuousConstSMul
IsScalarTower.left
uniformContinuousConstSMul_op πŸ“–mathematicalβ€”UniformContinuousConstSMul
MulOpposite
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
toAddGroupWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulOpposite.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toSemiring
Module.toDistribMulAction
MulOpposite.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
toNonAssocRing
Semiring.toOppositeModule
β€”uniformContinuousConstSMul_of_continuousConstSMul
SMulCommClass.continuousConstSMul
Semigroup.opposite_smulCommClass

UniformContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
const_mul' πŸ“–mathematicalUniformContinuousDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”const_smul
const_smul πŸ“–mathematicalUniformContinuousFunction.hasSMulβ€”comp
UniformContinuousConstSMul.uniformContinuous_const_smul
const_vadd πŸ“–mathematicalUniformContinuousHVAdd.hVAdd
instHVAdd
Function.hasVAdd
β€”comp
UniformContinuousConstVAdd.uniformContinuous_const_vadd
div_const' πŸ“–mathematicalUniformContinuousDivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”div_eq_mul_inv
mul_const'
mul_const' πŸ“–mathematicalUniformContinuousDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”const_smul

UniformContinuousConstSMul

Theorems

NameKindAssumesProvesValidatesDepends On
op πŸ“–mathematicalβ€”UniformContinuousConstSMul
MulOpposite
β€”IsCentralScalar.op_smul_eq_smul
uniformContinuous_const_smul
to_continuousConstSMul πŸ“–mathematicalβ€”ContinuousConstSMul
UniformSpace.toTopologicalSpace
β€”UniformContinuous.continuous
uniformContinuous_const_smul
uniformContinuous_const_smul πŸ“–mathematicalβ€”UniformContinuousβ€”β€”

UniformContinuousConstVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
op πŸ“–mathematicalβ€”UniformContinuousConstVAdd
AddOpposite
β€”IsCentralVAdd.op_vadd_eq_vadd
uniformContinuous_const_vadd
to_continuousConstVAdd πŸ“–mathematicalβ€”ContinuousConstVAdd
UniformSpace.toTopologicalSpace
β€”UniformContinuous.continuous
uniformContinuous_const_vadd
uniformContinuous_const_vadd πŸ“–mathematicalβ€”UniformContinuous
HVAdd.hVAdd
instHVAdd
β€”β€”

UniformSpace.Completion

Definitions

NameCategoryTheorems
instAddActionOfUniformContinuousConstVAdd πŸ“–CompOpβ€”
instMulActionOfUniformContinuousConstSMul πŸ“–CompOpβ€”
instSMul πŸ“–CompOp
12 mathmath: smul_def, IsDedekindDomain.HeightOneSpectrum.adicCompletion.instIsScalarTower', instSMulCommClassOfUniformContinuousConstSMul, IsDedekindDomain.HeightOneSpectrum.coe_smul_adicCompletionIntegers, instUniformContinuousConstSMul, PadicComplex.instIsScalarTowerPadicPadicAlgCl, coe_smul, Valued.instFaithfulSMulCompletionOfUniformContinuousConstSMul, IsDedekindDomain.HeightOneSpectrum.coe_smul_adicCompletion, instIsCentralScalar, instIsBoundedSMul, instIsScalarTower
instVAdd πŸ“–CompOp
6 mathmath: vadd_def, coe_vadd, instUniformContinuousConstVAdd, instVAddAssocClass, instIsCentralVAdd, instVAddCommClassOfUniformContinuousConstVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
coe_smul πŸ“–mathematicalβ€”coe'
UniformSpace.Completion
instSMul
β€”map_coe
UniformContinuousConstSMul.uniformContinuous_const_smul
coe_vadd πŸ“–mathematicalβ€”coe'
HVAdd.hVAdd
instHVAdd
UniformSpace.Completion
instVAdd
β€”map_coe
UniformContinuousConstVAdd.uniformContinuous_const_vadd
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
UniformSpace.Completion
instSMul
MulOpposite
β€”IsCentralScalar.op_smul_eq_smul
instIsCentralVAdd πŸ“–mathematicalβ€”IsCentralVAdd
UniformSpace.Completion
instVAdd
AddOpposite
β€”IsCentralVAdd.op_vadd_eq_vadd
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
UniformSpace.Completion
instSMul
β€”map_comp
UniformContinuousConstSMul.uniformContinuous_const_smul
smul_assoc
instSMulCommClassOfUniformContinuousConstSMul πŸ“–mathematicalβ€”SMulCommClass
UniformSpace.Completion
instSMul
β€”map_comp
UniformContinuousConstSMul.uniformContinuous_const_smul
SMulCommClass.smul_comm
instUniformContinuousConstSMul πŸ“–mathematicalβ€”UniformContinuousConstSMul
UniformSpace.Completion
uniformSpace
instSMul
β€”uniformContinuous_map
instUniformContinuousConstVAdd πŸ“–mathematicalβ€”UniformContinuousConstVAdd
UniformSpace.Completion
uniformSpace
instVAdd
β€”uniformContinuous_map
instVAddAssocClass πŸ“–mathematicalβ€”VAddAssocClass
UniformSpace.Completion
instVAdd
β€”map_comp
UniformContinuousConstVAdd.uniformContinuous_const_vadd
vadd_assoc
instVAddCommClassOfUniformContinuousConstVAdd πŸ“–mathematicalβ€”VAddCommClass
UniformSpace.Completion
instVAdd
β€”map_comp
UniformContinuousConstVAdd.uniformContinuous_const_vadd
VAddCommClass.vadd_comm
smul_def πŸ“–mathematicalβ€”UniformSpace.Completion
instSMul
map
β€”β€”
vadd_def πŸ“–mathematicalβ€”HVAdd.hVAdd
UniformSpace.Completion
instHVAdd
instVAdd
map
β€”β€”

(root)

Definitions

NameCategoryTheorems
UniformContinuousConstSMul πŸ“–CompData
20 mathmath: IsDedekindDomain.HeightOneSpectrum.adicValued.has_uniform_continuous_const_smul', AddMonoid.uniformContinuousConstSMul_nat, MulOpposite.uniformContinuousConstSMul, IsBoundedSMul.toUniformContinuousConstSMul, Ring.uniformContinuousConstSMul, UniformSpace.Completion.instUniformContinuousConstSMul, ContinuousLinearMap.uniformContinuousConstSMul, ContinuousAlternatingMap.instUniformContinuousConstSMul, uniformContinuousConstSMul_of_continuousConstSMul, PadicAlgCl.instUniformContinuousConstSMulPadic, IsUniformInducing.uniformContinuousConstSMul, UniformFunOn.uniformContinuousConstSMul, AddGroup.uniformContinuousConstSMul_int, IsDedekindDomain.HeightOneSpectrum.adicValued.uniformContinuousConstSMul, ContinuousMultilinearMap.instUniformContinuousConstSMul, UniformContinuousConstSMul.op, UniformConvergenceCLM.instUniformContinuousConstSMul, UniformFun.uniformContinuousConstSMul, Ring.uniformContinuousConstSMul_op, IsUniformGroup.to_uniformContinuousConstSMul
UniformContinuousConstVAdd πŸ“–CompData
5 mathmath: UniformContinuousConstVAdd.op, IsUniformAddGroup.to_uniformContinuousConstVAdd, UniformSpace.Completion.instUniformContinuousConstVAdd, IsUniformInducing.uniformContinuousConstVAdd, AddOpposite.uniformContinuousConstVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
smul_uniformity πŸ“–mathematicalβ€”Filter
Filter.instSMulFilter
Prod.instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
uniformity
β€”IsUnit.smul_uniformity
Group.isUnit
smul_uniformityβ‚€ πŸ“–mathematicalβ€”Filter
Filter.instSMulFilter
Prod.instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
uniformity
β€”IsUnit.smul_uniformity
Ne.isUnit
uniformContinuousConstSMul_of_continuousConstSMul πŸ“–mathematicalβ€”UniformContinuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
β€”uniformContinuous_of_continuousAt_zero
AddMonoidHom.instAddMonoidHomClass
Continuous.continuousAt
ContinuousConstSMul.continuous_const_smul
uniformContinuous_div_const' πŸ“–mathematicalβ€”UniformContinuous
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”UniformContinuous.div_const'
uniformContinuous_id
uniformContinuous_mul_left' πŸ“–mathematicalβ€”UniformContinuous
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”UniformContinuous.const_mul'
uniformContinuous_id
uniformContinuous_mul_right' πŸ“–mathematicalβ€”UniformContinuous
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”UniformContinuous.mul_const'
uniformContinuous_id
vadd_uniformity πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
Filter.instVAddFilter
Prod.instVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
uniformity
β€”IsAddUnit.vadd_uniformity
AddGroup.isAddUnit

---

← Back to Index