📁 Source: Mathlib/Topology/Algebra/Valued/LocallyCompact.lean
maximalIdeal_eq_closedBall
maximalIdeal_pow_eq_closedBall_pow
v_eq_valuation
isNontrivial_iff_not_a_field
coe_span_singleton_eq_closedBall
compactSpace_iff_completeSpace_and_isDiscreteValuationRing_and_finite_residueField
exists_nnnorm_lt_one
exists_norm_coe_lt_one
exists_norm_lt_one
finite_quotient_maximalIdeal_pow_of_finite_residueField
isDiscreteValuationRing_of_compactSpace
isPrincipalIdealRing_of_compactSpace
isUnit_iff_norm_eq_one
locallyFiniteOrder_units_mrange_of_isCompact_integer
mem_iff
mulArchimedean_mrange_of_isCompact_integer
norm_coe_unit
norm_irreducible_lt_one
norm_irreducible_pos
norm_le_one
norm_unit
properSpace_iff_compactSpace_integer
properSpace_iff_completeSpace_and_isDiscreteValuationRing_integer_and_finite_residueField
totallyBounded_iff_finite_residueField
Irreducible
Subring
DivisionRing.toRing
Field.toDivisionRing
NormedField.toField
NontriviallyNormedField.toNormedField
SetLike.instMembership
Subring.instSetLike
Valued.integer
NNReal
NNReal.instLinearOrderedCommGroupWithZero
NormedField.toValued
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Subring.instSubringClass
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Valued.maximalIdeal
Metric.closedBall
Subtype.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SubringClass.addSubgroupClass
Norm.norm
NormedRing.toNorm
SubringClass.toNormedRing
Subring.instIsDomainSubtypeMem
instIsDomain
IsDiscreteValuationRing.toIsLocalRing
maximalIdeal_eq_setOf_le_v_coe
dist_zero_right
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Real
Monoid.toNatPow
Real.instMonoid
maximalIdeal_pow_eq_setOf_le_v_coe_pow
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
toNormedCommRing
Valuation.instFunLike
Valued.v
toValued
valuation
IsNontrivial
ValuationRing.isLocalRing
Subring.instNontrivialSubtypeMem
EuclideanDomain.toNontrivial
ValuationRing.toPreValuationRing
ValuationRing.instValuationRingInteger
isNontrivial_iff_exists_lt_one
instIsConcreteLE
Iff.not_right
IsLocalRing.notMem_maximalIdeal
LT.lt.le
Ideal.span
Set
Set.instSingletonSet
Valuation.integer.coe_span_singleton_eq_setOf_le_v_coe
CompactSpace
instTopologicalSpaceSubtype
Valued.toUniformSpace
CompleteSpace
instUniformSpaceSubtype
IsDiscreteValuationRing
Subring.toCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finite
Valued.ResidueField
Valuation.RankOne.instIsNontrivial
complete_of_compact
isCompact_iff_totallyBounded_isComplete
isCompact_univ_iff
completeSpace_iff_isComplete_univ
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
SubringClass.toSeminormedCommRing
instOneNNReal
Real.instLT
Real.instZero
NormedField.toNorm
Real.instOne
NormedField.exists_norm_lt_one
HasQuotient.Quotient
Ideal.instHasQuotient_1
pow_zero
Ideal.one_eq_top
Finite.of_fintype
Ideal.pow_le_pow_right
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Ideal.instIsTwoSided_1
Finite.of_equiv
Submodule.isScalarTower'
IsPrincipalIdealRing.principal
IsDiscreteValuationRing.toIsPrincipalIdealRing
IsDiscreteValuationRing.not_a_field
Finite.of_ideal_quotient
Valuation.isNontrivial_iff_not_a_field
IsPrincipalIdealRing
Valuation.integer.integers
isCompact_iff_compactSpace
MonoidWithZeroHomClass.toMonoidHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered_mrange
not_subsingleton
instNontrivialUnitsOfDenselyOrdered
LocallyFiniteOrder.denselyOrdered_iff_subsingleton
instDenselyOrderedUnits
IsUnit
Valuation.Integers.isUnit_iff_valuation_eq_one
IsCompact
LocallyFiniteOrder
Units
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
Submonoid.instSetLike
MonoidHom.mrange
NonAssocSemiring.toMulZeroOneClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Ring.toSemiring
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
Submonoid.toMonoid
Units.instPreorder
Subtype.preorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
Subtype.prop
lt_or_ge
Set.Icc_eq_empty_of_lt
Set.finite_empty
Subtype.coe_lt_coe
IsCompact.elim_finite_subcover
Valued.isOpen_closedBall
LT.lt.ne'
Valued.isOpen_sphere
LT.lt.trans'
Set.Finite.subset
Subtype.coe_injective
Set.Finite.dependent_image
Finset.finite_toSet
Eq.trans_le
Set.iUnion_congr_Prop
le_antisymm
Subtype.coe_eta
lt_trichotomy
Set.Icc_self
le_total
Set.Icc_subset_Icc_right
Set.Finite.union
Set.Finite.inv
le_of_eq
Set.inv_Icc
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
inv_one
Set.Icc_union_Icc_eq_Icc
inv_inv
inv_lt_inv'
inv_le_one_of_one_le
LT.lt.trans
Real.instLE
MulArchimedean
Submonoid.toCommMonoid
CommMonoidWithZero.toCommMonoid
Subtype.partialOrder
Units.mulArchimedean_iff
MulArchimedean.of_locallyFiniteOrder
Units.val
Valuation.Integers.valuation_unit
Valuation.integer.v_irreducible_lt_one
Valuation.integer.v_irreducible_pos
ProperSpace
Valued.toNormedField
Set.image_univ
Subtype.range_coe_subtype
Valued.toNormedField.setOf_mem_integer_eq_closedBall
ProperSpace.isCompact_closedBall
IsCompact.locallyCompactSpace_of_mem_nhds_of_addGroup
NonarchimedeanAddGroup.toIsTopologicalAddGroup
IsUltrametricDist.nonarchimedeanAddGroup
Valued.instIsUltrametricDist
Metric.closedBall_mem_nhds
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
ProperSpace.of_nontriviallyNormedField_of_weaklyLocallyCompactSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
TotallyBounded
Set.univ
IsDiscreteValuationRing.exists_irreducible
Metric.finite_approx_of_totallyBounded
norm_pos_iff
Irreducible.ne_zero
Set.finite_univ_iff
Set.Finite.image
Eq.ge
Set.mem_univ
Set.image_congr
Ideal.Quotient.mk_eq_mk_iff_sub_mem
Valued.maximalIdeal.eq_1
Irreducible.maximalIdeal_eq
SetLike.mem_coe
Valuation.Integers.coe_span_singleton_eq_setOf_le_v_algebraMap
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
dist_eq_norm
dist_comm
Metric.totallyBounded_iff
exists_pow_lt_of_lt_one
Real.instIsStrictOrderedRing
Real.instArchimedean
AddGroup.existsAddOfLE
Valued.toNormedField.norm_lt_one_iff
Set.toFinite
Finite.Set.finite_image
Subtype.finite
Set.ext
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
map_pow
Ideal.univ_eq_iUnion_image_add
Irreducible.maximalIdeal_pow_eq_setOf_le_v_coe_pow
Metric.vadd_closedBall
NormedAddGroup.to_isIsometricVAdd_left
add_zero
Set.iUnion_exists
Set.iUnion_iUnion_eq'
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.closedBall_subset_ball
Set.subset_iUnion_of_subset
le_rfl
---
← Back to Index