Documentation Verification Report

ValuationTopology

πŸ“ Source: Mathlib/Topology/Algebra/Valued/ValuationTopology.lean

Statistics

MetricCount
DefinitionsValued, mk', toUniformSpace, v
4
Theoremsmap_eq_one_of_forall_lt, subgroups_basis, cauchy_iff, discreteTopology_of_forall_lt, discreteTopology_of_forall_map_eq_one, hasBasis_nhds_zero, hasBasis_uniformity, instIsTopologicalRing, isClopen_ball, isClopen_closedBall, isClopen_integer, isClopen_sphere, isClopen_valuationSubring, isClosed_ball, isClosed_closedBall, isClosed_integer, isClosed_sphere, isClosed_valuationSubring, isOpen_ball, isOpen_closedBall, isOpen_closedball, isOpen_integer, isOpen_sphere, isOpen_valuationSubring, is_topological_valuation, loc_const, mem_nhds, mem_nhds_zero, toIsUniformAddGroup, toUniformSpace_eq
30
Total34

Valuation

Theorems

NameKindAssumesProvesValidatesDepends On
map_eq_one_of_forall_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
DivisionRing.toRing
instFunLike
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”CanLift.prf
instCanLiftUnitsValIsUnit
lt_trichotomy
exists_pow_lt
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Units.instMulArchimedean
MonoidWithZeroHomClass.toMonoidHomClass
ValuationClass.toMonoidWithZeroHomClass
instValuationClass
LT.lt.not_gt
map_pow
isReduced_of_noZeroDivisors
GroupWithZero.noZeroDivisors
GroupWithZero.toNontrivial
inv_lt_one'
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
inv_pow
Units.val_inv_eq_inv_val
zpow_neg
zpow_natCast
map_invβ‚€
subgroups_basis πŸ“–mathematicalβ€”RingSubgroupsBasis
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
ltAddSubgroup
β€”Units.min_val
exists_square_le
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
map_mul
mul_lt_mul''
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
MulPosStrictMono.toMulPosMono
LinearOrderedCommMonoidWithZero.toMulPosStrictMono
zero_le'
GroupWithZero.eq_zero_or_unit
MulZeroClass.zero_mul
Units.zero_lt
mul_comm
Units.val_inv_eq_inv_val
inv_inv
mul_inv_lt_of_lt_mulβ‚€
Units.val_mul
MulZeroClass.mul_zero

Valued

Definitions

NameCategoryTheorems
mk' πŸ“–CompOpβ€”
toUniformSpace πŸ“–CompOp
130 mathmath: continuous_extension, isOpen_closedball, IsDedekindDomain.HeightOneSpectrum.adicValued.has_uniform_continuous_const_smul', NumberField.FinitePlace.mk_apply, Padic.withValUniformEquiv_norm_le_one_iff, extension_extends, valuedCompletion_surjective_iff, PadicComplex.valuation_extends, PadicComplex.coe_eq, LaurentSeries.LaurentSeriesRingEquiv_def, IsDedekindDomain.HeightOneSpectrum.instFaithfulSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, integer.compactSpace_iff_completeSpace_and_isDiscreteValuationRing_and_finite_residueField, NumberField.FinitePlace.norm_def', IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers, NumberField.FinitePlace.embedding_apply, toUniformSpace_eq, PadicComplex.norm_def, Valuation.IsEquiv.valuedCompletion_le_one_iff, PadicComplex.coe_natCast, isClopen_ball, IsDedekindDomain.HeightOneSpectrum.adicCompletion.instIsScalarTower', exists_coe_eq_v, NumberField.FinitePlace.norm_embedding_eq, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, is_topological_valuation, continuous_valuation, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, extension_eq_zero_iff, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_def, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.integers, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, NumberField.AdeleRing.algebraMap_snd_apply, IsDedekindDomain.HeightOneSpectrum.algebraMap_adicCompletionIntegers_apply, tendsto_zero_pow_of_le_exp_neg_one, isClopen_valuationSubring, IsDedekindDomain.HeightOneSpectrum.coe_smul_adicCompletionIntegers, IsDedekindDomain.HeightOneSpectrum.coe_algebraMap_mem, tendsto_zero_pow_of_v_lt_one, isOpen_sphere, isClosed_valuationSubring, Valuation.IsEquiv.uniformContinuous_equivWithVal, instIsTopologicalRing, hasBasis_nhds_zero, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, toIsUniformAddGroup, discreteTopology_of_forall_lt, NumberField.FinitePlace.norm_lt_one_iff_mem, continuous_extensionValuation, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation', isClosed_ball, PadicAlgCl.instUniformContinuousConstSMulPadic, IsDedekindDomain.HeightOneSpectrum.instIsTorsionFreeSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, isClopen_sphere, PadicComplex.valuation_p, isClosed_sphere, ValuedRing.separated, PadicComplex.isNonarchimedean, isOpen_valuationSubring, PadicInt.coe_adicCompletionIntegersEquiv_apply, LaurentSeries.coe_X_compare, closure_coe_completion_v_lt, valuation_isClosedMap, closure_coe_completion_v_mul_v_lt, valuedCompletion_apply, cauchy_iff, NumberField.FinitePlace.norm_def_int, isClosed_integer, integer.properSpace_iff_completeSpace_and_isDiscreteValuationRing_integer_and_finite_residueField, PadicComplex.instIsScalarTowerPadicPadicAlgCl, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation, IsDedekindDomain.HeightOneSpectrum.coe_mem_adicCompletionIntegers, Padic.toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, isClopen_integer, LaurentSeries.valuation_LaurentSeries_equal_extension, LaurentSeries.LaurentSeries_coe, LaurentSeries.powerSeries_ext_subring, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, LaurentSeries.powerSeriesRingEquiv_coe_apply, instIsDiscreteValuationRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, PadicComplex.coe_zero, IsDedekindDomain.HeightOneSpectrum.adicValued.uniformContinuousConstSMul, integer.properSpace_iff_compactSpace_integer, isOpen_closedBall, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_surjective, mem_nhds_zero, isOpen_ball, mem_nhds, extensionValuation_apply_coe, LaurentSeries.instLaurentSeriesComplete, discreteTopology_of_forall_map_eq_one, Padic.withValUniformEquiv_cast_apply, Padic.coe_withValRingEquiv, NumberField.FinitePlace.norm_eq_one_iff_notMem, LaurentSeries.valuation_compare, Padic.isUniformInducing_cast_withVal, isOpen_integer, LaurentSeries.tendsto_valuation, PadicComplex.norm_extends, LaurentSeries.coe_range_dense, completable, Padic.coe_withValRingEquiv_symm, LaurentSeries.comparePkg_eq_extension, hasBasis_uniformity, PadicComplex.rankOne_hom_eq, instFaithfulSMulCompletionOfUniformContinuousConstSMul, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.isUnit_iff_valued_eq_one, LaurentSeries.uniformContinuous_coeff, isClosed_closedBall, IsDedekindDomain.HeightOneSpectrum.coe_smul_adicCompletion, integer.totallyBounded_iff_finite_residueField, instIsPrincipalIdealRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, LaurentSeries.ratfuncAdicComplRingEquiv_apply, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, loc_const, NumberField.FinitePlace.norm_le_one, LaurentSeries.mem_integers_of_powerSeries, IsDedekindDomain.HeightOneSpectrum.algebraMap_adicCompletion, isClopen_closedBall, IsDedekindDomain.HeightOneSpectrum.adicCompletion.mul_nonZeroDivisor_mem_adicCompletionIntegers, PadicComplex.nnnorm_extends, isTopologicalDivisionRing, Padic.isDenseInducing_cast_withVal, PadicComplexInt.integers, NumberField.FinitePlace.norm_def, IsDedekindDomain.HeightOneSpectrum.notMem_adicCompletionIntegers
v πŸ“–CompOp
88 mathmath: isOpen_closedball, Padic.withValUniformEquiv_norm_le_one_iff, toNormedField.norm_le_one_iff, extension_extends, valuedCompletion_surjective_iff, PadicComplex.valuation_extends, IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers, LaurentSeries.valuation_le_iff_coeff_lt_eq_zero, LaurentSeries.valuation_single_zpow, toUniformSpace_eq, Valuation.IsEquiv.valuedCompletion_le_one_iff, isClopen_ball, exists_coe_eq_v, is_topological_valuation, continuous_valuation, WithVal.apply_symm_equiv, LaurentSeries.val_le_one_iff_eq_coe, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_def, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.integers, FunctionField.valuedFqtInfty.def, isClopen_valuationSubring, WithVal.apply_equiv, isOpen_sphere, isClosed_valuationSubring, LaurentSeries.exists_ratFunc_val_lt, hasBasis_nhds_zero, coe_valuation_eq_rankOne_hom_comp_valuation, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation', isClosed_ball, isClopen_sphere, PadicAlgCl.valuation_p, PadicComplex.valuation_p, isClosed_sphere, isOpen_valuationSubring, toNormedField.norm_le_iff, integer.mulArchimedean_mrange_of_isCompact_integer, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, closure_coe_completion_v_lt, valuation_isClosedMap, closure_coe_completion_v_mul_v_lt, valuedCompletion_apply, cauchy_iff, norm_def, IsDedekindDomain.HeightOneSpectrum.adicValued_apply, isClosed_integer, toNormedField.one_lt_norm_iff, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation, isClopen_integer, LaurentSeries.valuation_LaurentSeries_equal_extension, RatFunc.v_def, PadicAlgCl.valuation_def, PadicAlgCl.valuation_coe, FunctionField.inftyValuedFqt.def, isOpen_closedBall, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_surjective, mem_nhds_zero, isOpen_ball, NormedField.v_eq_valuation, mem_nhds, integer.locallyFiniteOrder_units_mrange_of_isCompact_integer, extensionValuation_apply_coe, LaurentSeries.valuation_coe_ratFunc, LaurentSeries.valuation_compare, isOpen_integer, LaurentSeries.tendsto_valuation, IsDedekindDomain.HeightOneSpectrum.adicValued_apply', IsValuativeTopology.v_eq_valuation, toNormedField.norm_lt_iff, NumberField.toNNReal_valued_eq_adicAbv, hasBasis_uniformity, PadicComplex.rankOne_hom_eq, LaurentSeries.valuation_def, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.isUnit_iff_valued_eq_one, toNormedField.setOf_mem_integer_eq_closedBall, LaurentSeries.valuation_le_iff_coeff_lt_log_eq_zero, IsNonarchimedeanLocalField.instCompatibleValueGroupWithZeroV, isClosed_closedBall, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, loc_const, isClopen_closedBall, norm_pos_iff_valuation_pos, toNormedField.norm_lt_one_iff, LaurentSeries.exists_ratFunc_eq_v, toNormedField.one_le_norm_iff, PadicComplexInt.integers, LaurentSeries.valuation_X_pow, IsDedekindDomain.HeightOneSpectrum.notMem_adicCompletionIntegers

Theorems

NameKindAssumesProvesValidatesDepends On
cauchy_iff πŸ“–mathematicalβ€”Cauchy
toUniformSpace
Filter.NeBot
Set
Filter
Filter.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Units.val
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”Valuation.subgroups_basis
AddGroupFilterBasis.isTopologicalAddGroup
toUniformSpace_eq
AddGroupFilterBasis.cauchy_iff
RingSubgroupsBasis.mem_addGroupFilterBasis_iff
RingSubgroupsBasis.mem_addGroupFilterBasis
discreteTopology_of_forall_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
DivisionRing.toRing
Valuation.instFunLike
v
DiscreteTopology
UniformSpace.toTopologicalSpace
toUniformSpace
β€”discreteTopology_of_forall_map_eq_one
GroupWithZero.toNontrivial
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
Valuation.map_eq_one_of_forall_lt
discreteTopology_of_forall_map_eq_one πŸ“–mathematicalDFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
Valuation.instFunLike
v
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
LinearOrderedCommGroupWithZero.toCommGroupWithZero
DiscreteTopology
UniformSpace.toTopologicalSpace
toUniformSpace
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRing
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
LT.lt.ne
hasBasis_nhds_zero πŸ“–mathematicalβ€”Filter.HasBasis
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
nhds
UniformSpace.toTopologicalSpace
toUniformSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
Units.val
β€”β€”
hasBasis_uniformity πŸ“–mathematicalβ€”Filter.HasBasis
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
uniformity
toUniformSpace
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Units.val
β€”uniformity_eq_comap_nhds_zero
IsUniformAddGroup.isRightUniformAddGroup
toIsUniformAddGroup
Filter.HasBasis.comap
hasBasis_nhds_zero
instIsTopologicalRing πŸ“–mathematicalβ€”IsTopologicalRing
UniformSpace.toTopologicalSpace
toUniformSpace
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Valuation.subgroups_basis
AddGroupFilterBasis.isTopologicalAddGroup
RingFilterBasis.isTopologicalRing
toUniformSpace_eq
isClopen_ball πŸ“–mathematicalβ€”IsClopen
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
β€”isClosed_ball
isOpen_ball
isClopen_closedBall πŸ“–mathematicalβ€”IsClopen
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
β€”isClosed_closedBall
isOpen_closedBall
isClopen_integer πŸ“–mathematicalβ€”IsClopen
UniformSpace.toTopologicalSpace
toUniformSpace
SetLike.coe
Subring
Subring.instSetLike
Valuation.integer
v
β€”isClosed_integer
isOpen_integer
isClopen_sphere πŸ“–mathematicalβ€”IsClopen
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
Valuation.instFunLike
v
β€”Set.ext
IsClopen.diff
isClopen_closedBall
isClopen_ball
isClopen_valuationSubring πŸ“–mathematicalβ€”IsClopen
UniformSpace.toTopologicalSpace
toUniformSpace
DivisionRing.toRing
Field.toDivisionRing
SetLike.coe
ValuationSubring
ValuationSubring.instSetLike
Valuation.valuationSubring
v
β€”isClopen_integer
isClosed_ball πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
β€”eq_or_ne
AddSubgroup.isClosed_of_isOpen
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRing
isOpen_ball
isClosed_closedBall πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
β€”isOpen_compl_iff
isOpen_iff_mem_nhds
mem_nhds
ne_of_gt
lt_of_le_of_lt
zero_le'
lt_of_not_ge
ne_of_lt
Valuation.map_sub_eq_of_lt_left
Valuation.map_sub_swap
isClosed_integer πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
toUniformSpace
SetLike.coe
Subring
Subring.instSetLike
Valuation.integer
v
β€”isClosed_closedBall
isClosed_sphere πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
Valuation.instFunLike
v
β€”eq_or_ne
isClosed_closedBall
IsClopen.isClosed
isClopen_sphere
isClosed_valuationSubring πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
toUniformSpace
DivisionRing.toRing
Field.toDivisionRing
SetLike.coe
ValuationSubring
ValuationSubring.instSetLike
Valuation.valuationSubring
v
β€”isClosed_integer
isOpen_ball πŸ“–mathematicalβ€”IsOpen
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
β€”isOpen_iff_mem_nhds
eq_or_ne
nhds_neBot
mem_nhds
LE.le.trans_lt
Valuation.map_add
max_lt
sub_add_cancel
isOpen_closedBall πŸ“–mathematicalβ€”IsOpen
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
β€”isOpen_iff_mem_nhds
mem_nhds
le_trans
Valuation.map_add
max_le
le_of_lt
sub_add_cancel
isOpen_closedball πŸ“–mathematicalβ€”IsOpen
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
β€”isOpen_closedBall
isOpen_integer πŸ“–mathematicalβ€”IsOpen
UniformSpace.toTopologicalSpace
toUniformSpace
SetLike.coe
Subring
Subring.instSetLike
Valuation.integer
v
β€”isOpen_closedBall
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
isOpen_sphere πŸ“–mathematicalβ€”IsOpen
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
Valuation.instFunLike
v
β€”IsClopen.isOpen
isClopen_sphere
isOpen_valuationSubring πŸ“–mathematicalβ€”IsOpen
UniformSpace.toTopologicalSpace
toUniformSpace
DivisionRing.toRing
Field.toDivisionRing
SetLike.coe
ValuationSubring
ValuationSubring.instSetLike
Valuation.valuationSubring
v
β€”isOpen_integer
is_topological_valuation πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
toUniformSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Set.instHasSubset
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
Units.val
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”β€”
loc_const πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
toUniformSpace
setOf
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
Valuation.instFunLike
v
β€”mem_nhds
Units.val_mk0
Valuation.map_eq_of_sub_lt
mem_nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
toUniformSpace
Set.instHasSubset
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Units.val
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”nhds_translation_add_neg
IsUniformAddGroup.to_topologicalAddGroup
toIsUniformAddGroup
Filter.HasBasis.mem_iff
Filter.HasBasis.comap
hasBasis_nhds_zero
mem_nhds_zero πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
toUniformSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Set.instHasSubset
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
v
Units.val
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”sub_zero
toIsUniformAddGroup πŸ“–mathematicalβ€”IsUniformAddGroup
toUniformSpace
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”β€”
toUniformSpace_eq πŸ“–mathematicalβ€”toUniformSpace
IsTopologicalAddGroup.rightUniformSpace
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
RingSubgroupsBasis.topology
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
Units.instInhabited
Valuation.ltAddSubgroup
v
Valuation.subgroups_basis
AddGroupFilterBasis.isTopologicalAddGroup
RingFilterBasis.toAddGroupFilterBasis
RingSubgroupsBasis.toRingFilterBasis
β€”UniformSpace.ext
Valuation.subgroups_basis
AddGroupFilterBasis.isTopologicalAddGroup
Filter.HasBasis.eq_of_same_basis
hasBasis_uniformity
Filter.HasBasis.comap
RingSubgroupsBasis.hasBasis_nhds_zero

(root)

Definitions

NameCategoryTheorems
Valued πŸ“–CompDataβ€”

---

← Back to Index