Documentation Verification Report

ValuativeRel

πŸ“ Source: Mathlib/Topology/Algebra/Valued/ValuativeRel.lean

Statistics

MetricCount
DefinitionsinstValuedValueGroupWithZeroOfIsUniformAddGroup, ValuativeRel, Β«termπ’ͺ[_]Β», Β«term𝓀[_]Β», Β«term𝓂[_]Β»
5
Theoremscontinuous_valuation, hasBasis_nhds, hasBasis_nhds', hasBasis_nhds_zero, hasBasis_nhds_zero', instIsTopologicalRing, isClopen_ball, isClopen_closedBall, isClopen_sphere, isClosed_ball, isClosed_closedBall, isOpen_ball, isOpen_closedBall, isOpen_sphere, isTopologicalAddGroup, mem_nhds_iff', mem_nhds_zero_iff, of_zero, v_eq_valuation
19
Total24

IsValuativeTopology

Definitions

NameCategoryTheorems
instValuedValueGroupWithZeroOfIsUniformAddGroup πŸ“–CompOp
2 mathmath: v_eq_valuation, IsNonarchimedeanLocalField.instCompatibleValueGroupWithZeroV

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_valuation πŸ“–mathematicalβ€”Continuous
ValuativeRel.ValueGroupWithZero
WithZeroTopology.topologicalSpace
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”Filter.HasBasis.tendsto_iff
hasBasis_nhds
WithZeroTopology.hasBasis_nhds_zero
Valuation.map_sub_of_right_eq_zero
WithZeroTopology.hasBasis_nhds_of_ne_zero
Valuation.map_eq_of_sub_lt
hasBasis_nhds πŸ“–mathematicalβ€”Filter.HasBasis
Units
ValuativeRel.ValueGroupWithZero
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
nhds
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Units.val
β€”β€”
hasBasis_nhds' πŸ“–mathematicalβ€”Filter.HasBasis
ValuativeRel.ValueGroupWithZero
nhds
ValuativeRel.instZeroValueGroupWithZero
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”Filter.HasBasis.to_hasBasis
hasBasis_nhds
GroupWithZero.toNontrivial
Set.instReflSubset
hasBasis_nhds_zero πŸ“–mathematicalβ€”Filter.HasBasis
Units
ValuativeRel.ValueGroupWithZero
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
Units.val
β€”sub_zero
hasBasis_nhds
hasBasis_nhds_zero' πŸ“–mathematicalβ€”Filter.HasBasis
ValuativeRel.ValueGroupWithZero
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ValuativeRel.instZeroValueGroupWithZero
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”Filter.HasBasis.to_hasBasis
hasBasis_nhds_zero
GroupWithZero.toNontrivial
Set.instReflSubset
instIsTopologicalRing πŸ“–mathematicalβ€”IsTopologicalRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Valued.instIsTopologicalRing
isTopologicalAddGroup
isUniformAddGroup_of_addCommGroup
isClopen_ball πŸ“–mathematicalβ€”IsClopen
setOf
ValuativeRel.ValueGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”isClosed_ball
isOpen_ball
isClopen_closedBall πŸ“–mathematicalβ€”IsClopen
setOf
ValuativeRel.ValueGroupWithZero
ValuativeRel.instLEValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”isClosed_closedBall
isOpen_closedBall
isClopen_sphere πŸ“–mathematicalβ€”IsClopen
setOf
ValuativeRel.ValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”Set.ext
IsClopen.diff
isClopen_closedBall
isClopen_ball
isClosed_ball πŸ“–mathematicalβ€”IsClosed
setOf
ValuativeRel.ValueGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”eq_or_ne
AddSubgroup.isClosed_of_isOpen
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRing
isOpen_ball
isClosed_closedBall πŸ“–mathematicalβ€”IsClosed
setOf
ValuativeRel.ValueGroupWithZero
ValuativeRel.instLEValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”isOpen_compl_iff
isOpen_iff_mem_nhds
mem_nhds_iff'
ne_of_gt
lt_of_le_of_lt
zero_le'
ne_of_lt
Valuation.map_sub_eq_of_lt_left
Valuation.map_sub_swap
isOpen_ball πŸ“–mathematicalβ€”IsOpen
setOf
ValuativeRel.ValueGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”isOpen_iff_mem_nhds
eq_or_ne
nhds_neBot
mem_nhds_iff'
LE.le.trans_lt
Valuation.map_add
max_lt
sub_add_cancel
isOpen_closedBall πŸ“–mathematicalβ€”IsOpen
setOf
ValuativeRel.ValueGroupWithZero
ValuativeRel.instLEValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”isOpen_iff_mem_nhds
mem_nhds_iff'
le_trans
Valuation.map_add
max_le
le_of_lt
sub_add_cancel
isOpen_sphere πŸ“–mathematicalβ€”IsOpen
setOf
ValuativeRel.ValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
β€”IsClopen.isOpen
isClopen_sphere
isTopologicalAddGroup πŸ“–mathematicalβ€”IsTopologicalAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
β€”continuous_iff_continuousAt
Filter.HasBasis.tendsto_iff
hasBasis_nhds
add_sub_add_left_eq_sub
hasBasis_nhds_zero
IsTopologicalAddGroup.of_comm_of_nhds_zero
Filter.HasBasis.prod_self
Valuation.map_add_lt
Valuation.map_neg
Filter.map_eq_of_inverse
add_neg_cancel_left
add_zero
Continuous.continuousAt
ContinuousConstVAdd.continuous_const_vadd
neg_add_cancel
mem_nhds_iff' πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Set.instHasSubset
setOf
ValuativeRel.ValueGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Units.val
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”Set.image_add_left
neg_add_eq_sub
mem_nhds_iff
mem_nhds_zero_iff πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Set.instHasSubset
setOf
ValuativeRel.ValueGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
Units.val
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”sub_zero
mem_nhds_iff'
of_zero πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Set.instHasSubset
setOf
ValuativeRel.ValueGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuativeRel.instLinearOrderValueGroupWithZero
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
CommRing.toRing
Valuation.instFunLike
ValuativeRel.valuation
Units.val
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
IsValuativeTopologyβ€”vadd_mem_nhds_vadd_iff
neg_add_cancel
Set.image_congr
Set.image_add_left
neg_neg
v_eq_valuation πŸ“–mathematicalβ€”Valued.v
CommRing.toRing
ValuativeRel.ValueGroupWithZero
ValuativeRel.instLinearOrderedCommGroupWithZeroValueGroupWithZero
instValuedValueGroupWithZeroOfIsUniformAddGroup
ValuativeRel.valuation
β€”β€”

ValuativeRel

Definitions

NameCategoryTheorems
Β«termπ’ͺ[_]Β» πŸ“–CompOpβ€”
Β«term𝓀[_]Β» πŸ“–CompOpβ€”
Β«term𝓂[_]Β» πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
ValuativeRel πŸ“–CompDataβ€”

---

← Back to Index