Documentation Verification Report

BaireMeasurable

πŸ“ Source: Mathlib/Topology/Baire/BaireMeasurable.lean

Statistics

MetricCount
DefinitionsBaireMeasurableSet, Β«term_=ᡇ_Β», Β«termβˆ€α΅‡_,_Β», Β«termβˆƒα΅‡_,_Β»
4
TheoremsbiInter, biUnion, compl, diff, iInter, iUnion, iff_residualEq_isOpen, inter, of_compl, of_mem_residual, preimage, residualEq_isOpen, sInter, sUnion, union, residual_map_eq, baireMeasurableSet, preimage_of_isOpenMap, baireMeasurableSet, baireMeasurableSet, residualEq_isOpen, closure_residualEq, coborder_mem_residual, tendsto_residual_of_isOpenMap
24
Total28

BaireMeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
biInter πŸ“–mathematicalBaireMeasurableSetSet.iInter
Set
Set.instMembership
β€”MeasurableSet.biInter
countableInterFilter_residual
biUnion πŸ“–mathematicalBaireMeasurableSetSet.iUnion
Set
Set.instMembership
β€”MeasurableSet.biUnion
countableInterFilter_residual
compl πŸ“–mathematicalBaireMeasurableSetCompl.compl
Set
Set.instCompl
β€”MeasurableSet.compl
countableInterFilter_residual
diff πŸ“–mathematicalBaireMeasurableSetSet
Set.instSDiff
β€”MeasurableSet.diff
countableInterFilter_residual
iInter πŸ“–mathematicalBaireMeasurableSetSet.iInterβ€”MeasurableSet.iInter
countableInterFilter_residual
iUnion πŸ“–mathematicalBaireMeasurableSetSet.iUnionβ€”MeasurableSet.iUnion
countableInterFilter_residual
iff_residualEq_isOpen πŸ“–mathematicalβ€”BaireMeasurableSet
IsOpen
Filter.EventuallyEq
residual
β€”residualEq_isOpen
congr
IsOpen.baireMeasurableSet
Filter.EventuallyEq.symm
inter πŸ“–mathematicalBaireMeasurableSetSet
Set.instInter
β€”MeasurableSet.inter
countableInterFilter_residual
of_compl πŸ“–β€”BaireMeasurableSet
Compl.compl
Set
Set.instCompl
β€”β€”MeasurableSet.of_compl
countableInterFilter_residual
of_mem_residual πŸ“–mathematicalSet
Filter
Filter.instMembership
residual
BaireMeasurableSetβ€”eventuallyMeasurableSet_of_mem_filter
countableInterFilter_residual
preimage πŸ“–mathematicalContinuous
IsOpenMap
BaireMeasurableSet
Set.preimageβ€”Continuous.measurable
BorelSpace.opensMeasurable
Filter.EventuallyEq.filter_mono
tendsto_residual_of_isOpenMap
residualEq_isOpen πŸ“–mathematicalBaireMeasurableSetIsOpen
Filter.EventuallyEq
residual
β€”MeasurableSet.residualEq_isOpen
Filter.EventuallyEq.trans
sInter πŸ“–mathematicalBaireMeasurableSetSet.sInterβ€”MeasurableSet.sInter
countableInterFilter_residual
sUnion πŸ“–mathematicalBaireMeasurableSetSet.sUnionβ€”MeasurableSet.sUnion
countableInterFilter_residual
union πŸ“–mathematicalBaireMeasurableSetSet
Set.instUnion
β€”MeasurableSet.union
countableInterFilter_residual

Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
residual_map_eq πŸ“–mathematicalβ€”Filter.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
residual
β€”le_antisymm
tendsto_residual_of_isOpenMap
continuous
isOpenMap
Filter.le_map

IsMeagre

Theorems

NameKindAssumesProvesValidatesDepends On
baireMeasurableSet πŸ“–mathematicalIsMeagreBaireMeasurableSetβ€”BaireMeasurableSet.of_compl
BaireMeasurableSet.of_mem_residual
preimage_of_isOpenMap πŸ“–mathematicalContinuous
IsOpenMap
IsMeagre
Set.preimageβ€”tendsto_residual_of_isOpenMap

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
baireMeasurableSet πŸ“–mathematicalIsOpenBaireMeasurableSetβ€”MeasurableSet.baireMeasurableSet
measurableSet
BorelSpace.opensMeasurable

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
baireMeasurableSet πŸ“–mathematicalMeasurableSetBaireMeasurableSetβ€”BorelSpace.measurable_eq
eventuallyMeasurableSet
countableInterFilter_residual
residualEq_isOpen πŸ“–mathematicalMeasurableSetIsOpen
Filter.EventuallyEq
residual
β€”induction_on_open
Filter.EventuallyEq.rfl
IsClosed.isOpen_compl
isClosed_closure
Filter.EventuallyEq.compl
Filter.EventuallyEq.trans
Filter.EventuallyEq.symm
closure_residualEq
IsOpen.isLocallyClosed
isOpen_iUnion
EventuallyEq.countable_iUnion
countableInterFilter_residual
instCountableNat

Topology

Definitions

NameCategoryTheorems
Β«term_=ᡇ_Β» πŸ“–CompOpβ€”
Β«termβˆ€α΅‡_,_Β» πŸ“–CompOpβ€”
Β«termβˆƒα΅‡_,_Β» πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
BaireMeasurableSet πŸ“–MathDef
5 mathmath: BaireMeasurableSet.of_mem_residual, IsMeagre.baireMeasurableSet, MeasurableSet.baireMeasurableSet, BaireMeasurableSet.iff_residualEq_isOpen, IsOpen.baireMeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
closure_residualEq πŸ“–mathematicalIsLocallyClosedFilter.EventuallyEq
residual
closure
β€”Filter.eventuallyEq_set
Filter.mp_mem
coborder_mem_residual
Filter.univ_mem'
closure_inter_coborder
coborder_mem_residual πŸ“–mathematicalIsLocallyClosedSet
Filter
Filter.instMembership
residual
coborder
β€”residual_of_dense_open
IsLocallyClosed.isOpen_coborder
dense_coborder
tendsto_residual_of_isOpenMap πŸ“–mathematicalContinuous
IsOpenMap
Filter.Tendsto
residual
β€”Filter.le_countableGenerate_iff_of_countableInterFilter
instCountableInterFilterMap
countableInterFilter_residual
residual_of_dense_open
IsOpen.preimage
Dense.preimage

---

← Back to Index