Documentation Verification Report

CompleteMetrizable

📁 Source: Mathlib/Topology/Baire/CompleteMetrizable.lean

Statistics

MetricCount
Definitions0
Theoremsof_completelyPseudoMetrizable
1
Total1

BaireSpace

Theorems

NameKindAssumesProvesValidatesDepends On
of_completelyPseudoMetrizable 📖mathematicalBaireSpaceNat.instAtLeastTwoHAddOfNat
ENNReal.div_pos
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
ENNReal.pow_ne_top
ENNReal.ofNat_ne_top
EMetric.mem_closure_iff
ENNReal.half_pos
Filter.HasBasis.mem_iff
Metric.nhds_basis_closedEBall
isOpen_iff_mem_nhds
lt_min
min_le_right
PseudoEMetricSpace.edist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_of_lt
PseudoEMetricSpace.edist_comm
le_trans
min_le_left
le_rfl
ENNReal.add_halves
mem_closure_iff_nhds_basis
LT.lt.ne'
Metric.mem_closedEBall_self
Set.Subset.trans
Set.inter_subset_left
Metric.closedEBall_subset_closedEBall
cauchySeq_of_edist_le_geometric_two
ENNReal.one_ne_top
cauchySeq_tendsto_of_complete
TopologicalSpace.UpgradedIsCompletelyPseudoMetrizableSpace.toCompleteSpace
Nat.le_induction
Set.Subset.refl
IsClosed.mem_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Metric.isClosed_closedEBall
Filter.Eventually.mono
Filter.eventually_ge_atTop
Set.inter_subset_right
Function.sometimes_spec

---

← Back to Index