Documentation Verification Report

Lemmas

📁 Source: Mathlib/Topology/Baire/Lemmas.lean

Statistics

MetricCount
Definitions0
Theoremsinter_of_Gδ, baireSpace_of_dense, dense_biUnion_interior_of_closed, dense_iUnion_interior_of_closed, dense_sUnion_interior_of_closed, baireSpace, dense_sInter, baireSpace, baire_of_finite, dense_biInter_of_Gδ, dense_biInter_of_isOpen, dense_biUnion_interior_of_closed, dense_iInter_of_Gδ, dense_iInter_of_isOpen, dense_iInter_of_isOpen_nat, dense_iUnion_interior_of_closed, dense_of_mem_residual, dense_sInter_of_Gδ, dense_sInter_of_isOpen, dense_sUnion_interior_of_closed, eventually_residual, mem_residual, nonempty_interior_of_iUnion_of_closed, not_isMeagre_of_isGδ_of_dense, not_isMeagre_of_isOpen, not_isMeagre_of_mem_residual
26
Total26

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
inter_of_Gδ 📖mathematicalIsGδ
Dense
Set
Set.instInter
Set.inter_eq_iInter
dense_iInter_of_Gδ
Bool.countable

IsGδ

Theorems

NameKindAssumesProvesValidatesDepends On
baireSpace_of_dense 📖mathematicalIsGδ
Dense
BaireSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
eq_iInter_nat
BaireSpace.baire_property
IsOpen.inter
Dense.inter_of_isOpen_left
Dense.mono
Set.ext
Subtype.dense_iff
exists_open_dense_of_open_dense_subtype
dense_biUnion_interior_of_closed 📖mathematicalIsGδ
Dense
IsClosed
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
interiorSet.biUnion_eq_iUnion
dense_iUnion_interior_of_closed
Set.Countable.to_subtype
dense_iUnion_interior_of_closed 📖mathematicalIsGδ
Dense
IsClosed
Set
Set.instHasSubset
Set.iUnion
interiorIsClosed.isOpen_compl
isClosed_frontier
dense_iInter_of_isOpen
closure_compl
interior_frontier
Dense.mono
Set.mem_iUnion
Set.mem_iInter
self_diff_frontier
Dense.inter_of_Gδ
iInter_of_isOpen
dense_sUnion_interior_of_closed 📖mathematicalIsGδ
Dense
IsClosed
Set
Set.instHasSubset
Set.sUnion
Set.iUnion
Set.instMembership
interior
dense_biUnion_interior_of_closed
Set.sUnion_eq_biUnion

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
baireSpace 📖mathematicalIsOpenBaireSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Topology.IsOpenEmbedding.baireSpace
isOpenEmbedding_subtypeVal

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
dense_sInter 📖mathematicalIsOpen
Dense
Set.sInterinduction_on
Set.sInter_empty
Set.sInter_insert
Dense.inter_of_isOpen_right
isOpen_sInter

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
baireSpace 📖mathematicalTopology.IsOpenEmbeddingBaireSpaceIsOpen.union
isOpenMap
IsClosed.isOpen_compl
isClosed_closure
dense_iff_closure_eq
subset_antisymm_iff
Set.instReflSubset
Set.instAntisymmSubset
Set.union_subset_union
interior_subset
subset_refl
closure_minimal
Continuous.range_subset_closure_image_dense
continuous
closure_compl
closure_union
dense_iInter_of_isOpen_nat
Set.ext
Function.Injective.mem_set_image
Topology.IsEmbedding.injective
toIsEmbedding
imp_iff_or_not
subset_closure
Set.mem_range_self
Dense.preimage

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
baire_of_finite 📖mathematicalBaireSpaceSet.Finite.dense_sInter
Set.toFinite
Subtype.finite
Set.instFinite
Set.sInter_range
dense_biInter_of_Gδ 📖mathematicalIsGδ
Dense
Set.iInter
Set
Set.instMembership
Set.biInter_eq_iInter
dense_iInter_of_Gδ
Set.Countable.to_subtype
dense_biInter_of_isOpen 📖mathematicalIsOpen
Dense
Set.iInter
Set
Set.instMembership
Set.sInter_image
dense_sInter_of_isOpen
Set.forall_mem_image
Set.Countable.image
dense_biUnion_interior_of_closed 📖mathematicalIsClosed
Set.iUnion
Set
Set.instMembership
Set.univ
Dense
interior
IsGδ.dense_biUnion_interior_of_closed
IsGδ.univ
dense_univ
Eq.ge
dense_iInter_of_Gδ 📖mathematicalIsGδ
Dense
Set.iInterdense_sInter_of_Gδ
Set.forall_mem_range
Set.countable_range
dense_iInter_of_isOpen 📖mathematicalIsOpen
Dense
Set.iInterdense_sInter_of_isOpen
Set.forall_mem_range
Set.countable_range
dense_iInter_of_isOpen_nat 📖mathematicalIsOpen
Dense
Set.iInterBaireSpace.baire_property
dense_iUnion_interior_of_closed 📖mathematicalIsClosed
Set.iUnion
Set.univ
Dense
interior
IsGδ.dense_iUnion_interior_of_closed
IsGδ.univ
dense_univ
Eq.ge
dense_of_mem_residual 📖mathematicalSet
Filter
Filter.instMembership
residual
Densemem_residual
Dense.mono
dense_sInter_of_Gδ 📖mathematicalIsGδ
Dense
Set.sInterdense_of_mem_residual
countable_sInter_mem
countableInterFilter_residual
residual_of_dense_Gδ
dense_sInter_of_isOpen 📖mathematicalIsOpen
Dense
Set.sInterSet.eq_empty_or_nonempty
Set.sInter_empty
Set.Countable.exists_eq_range
dense_iInter_of_isOpen_nat
Set.forall_mem_range
dense_sUnion_interior_of_closed 📖mathematicalIsClosed
Set.sUnion
Set.univ
Dense
Set.iUnion
Set
Set.instMembership
interior
IsGδ.dense_sUnion_interior_of_closed
IsGδ.univ
dense_univ
Eq.ge
eventually_residual 📖mathematicalFilter.Eventually
residual
IsGδ
Dense
mem_residual 📖mathematicalSet
Filter
Filter.instMembership
residual
Set.instHasSubset
IsGδ
Dense
mem_residual_iff
dense_sInter_of_isOpen
Filter.mem_of_superset
residual_of_dense_Gδ
nonempty_interior_of_iUnion_of_closed 📖mathematicalIsClosed
Set.iUnion
Set.univ
Set.Nonempty
interior
Dense.nonempty
dense_iUnion_interior_of_closed
not_isMeagre_of_isGδ_of_dense 📖mathematicalIsGδ
Dense
IsMeagremem_residual
Dense.nonempty
Dense.inter_of_Gδ
not_isMeagre_of_isOpen 📖mathematicalIsOpen
Set.Nonempty
IsMeagreDense.inter_open_nonempty
dense_of_mem_residual
IsMeagre.eq_1
not_isMeagre_of_mem_residual 📖mathematicalSet
Filter
Filter.instMembership
residual
IsMeagremem_residual
not_isMeagre_of_isGδ_of_dense
IsMeagre.mono

---

← Back to Index