Documentation Verification Report

Bases

πŸ“ Source: Mathlib/Topology/Bases.lean

Statistics

MetricCount
DefinitionsFirstCountableTopology, SecondCountableTopology, IsSeparable, IsTopologicalBasis, SeparableSpace, countableBasis, denseSeq, encodableCountableBasis
8
Theoremsexists_countable_dense_subset, exists_countable_dense_subset_bot_top, isSeparable_iff, separableSpace, separableSpace', toSecondCountableTopology, nhds_generated_countable, separableSpace_of_injective, separableSpace_of_isInducing, iInf, iInf_induced, countable_of_isOpen_disjoint, is_open_generated_countable, isSeparable, isSeparable, countable_of_isOpen, countable_of_nonempty_interior, to_separableSpace, tendsto_subseq, closure, iUnion, image, mono, of_separableSpace, of_subtype, prod, union, univ_pi, continuous_iff, dense_iff, diff_empty, eq_generateFrom, eq_of_forall_subset_iff, exists_countable, exists_countable_biUnion_of_isOpen, exists_nonempty_subset, exists_subset_inter, exists_subset_of_mem_open, induced, inf, inf_induced, insert_empty, isInducing, isOpen, isOpenMap_iff, isOpen_iff, isOpen_induction, isQuotientMap, mem_closure_iff, mem_nhds, mem_nhds_iff, nhds_hasBasis, of_hasBasis_nhds, of_isOpen_of_subset, open_eq_iUnion, open_eq_sUnion, open_eq_sUnion', open_iff_eq_sUnion, prod, quotient, sUnion_eq, secondCountableTopology, sigma, subset_of_forall_subset, sum, secondCountableTopology, mk', to_firstCountableTopology, to_separableSpace, exists_countable_dense, of_denseRange, firstCountableTopology, secondCountableTopology, countable_countableBasis, countable_cover_nhds, countable_cover_nhdsWithin, denseRange_denseSeq, empty_notMem_countableBasis, eq_generateFrom_countableBasis, exists_countable_basis, exists_countable_dense, exists_countable_of_generateFrom, exists_dense_seq, firstCountableTopology_induced, instFirstCountableTopologyForallOfCountable, instFirstCountableTopologyProd, instSecondCountableTopologyForallOfCountable, instSecondCountableTopologyOfCountableOfFirstCountableTopology, instSecondCountableTopologyProd, instSecondCountableTopologySigmaOfCountable, instSecondCountableTopologySum, instSeparableSpaceForallOfCountable, instSeparableSpaceProd, instSeparableSpaceQuot, instSeparableSpaceQuotient, instSeparableSpaceSum, isBasis_countableBasis, isCountablyGenerated_nhdsWithin, isOpen_biUnion_countable, isOpen_iUnion_countable, isOpen_of_mem_countableBasis, isOpen_sUnion_countable, isSeparable_closure, isSeparable_iUnion, isSeparable_pi, isSeparable_range, isSeparable_union, isSeparable_univ_iff, isTopologicalBasis_empty, isTopologicalBasis_of_cover, isTopologicalBasis_of_isOpen_of_nhds, isTopologicalBasis_of_subbasis, isTopologicalBasis_of_subbasis_of_finiteInter, isTopologicalBasis_of_subbasis_of_inter, isTopologicalBasis_opens, nonempty_of_mem_countableBasis, secondCountableTopology_iInf, secondCountableTopology_induced, secondCountableTopology_of_countable_cover, separableSpace_iff, separableSpace_iff_countable, separableSpace_sum_iff, firstCountableTopology, secondCountableTopology, separableSpace, firstCountableTopology, secondCountableTopology, separableSpace, secondCountableTopology, separableSpace, exists_countable_dense_bot_top, isOpenMap_eval, isTopologicalBasis_pi, isTopologicalBasis_singletons, isTopologicalBasis_subtype, separableSpace_univ
136
Total144

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
exists_countable_dense_subset πŸ“–mathematicalDenseSet
Set.instHasSubset
Set.Countable
β€”TopologicalSpace.exists_countable_dense
Subtype.coe_image_subset
Set.Countable.image
DenseRange.dense_image
denseRange_val
continuous_subtype_val
exists_countable_dense_subset_bot_top πŸ“–mathematicalDenseSet
Set.instHasSubset
Set.Countable
Set.instMembership
β€”exists_countable_dense_subset
Set.inter_subset_right
Set.Countable.mono
Set.inter_subset_left
Set.Countable.union
Set.countable_isBot
Set.countable_isTop
mono
Set.subset_inter
Set.subset_union_left
isSeparable_iff πŸ“–mathematicalDenseTopologicalSpace.IsSeparable
TopologicalSpace.SeparableSpace
β€”closure_eq
IsClosed.closure_subset_iff
isClosed_closure

DenseRange

Theorems

NameKindAssumesProvesValidatesDepends On
separableSpace πŸ“–mathematicalDenseRange
Continuous
TopologicalSpace.SeparableSpaceβ€”TopologicalSpace.exists_countable_dense
Set.Countable.image
dense_image
separableSpace' πŸ“–mathematicalDenseRangeTopologicalSpace.SeparableSpaceβ€”TopologicalSpace.SeparableSpace.of_denseRange

Finite

Theorems

NameKindAssumesProvesValidatesDepends On
toSecondCountableTopology πŸ“–mathematicalβ€”SecondCountableTopologyβ€”Set.to_countable
SetCoe.countable
to_countable
Set.instFinite
TopologicalSpace.IsTopologicalBasis.eq_generateFrom
TopologicalSpace.isTopologicalBasis_opens

FirstCountableTopology

Theorems

NameKindAssumesProvesValidatesDepends On
nhds_generated_countable πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
nhds
β€”β€”

IsOpenMap

Theorems

NameKindAssumesProvesValidatesDepends On
separableSpace_of_injective πŸ“–mathematicalIsOpenMapTopologicalSpace.SeparableSpaceβ€”TopologicalSpace.exists_countable_dense
Set.Countable.preimage
Dense.preimage
separableSpace_of_isInducing πŸ“–mathematicalIsOpenMap
Topology.IsInducing
TopologicalSpace.SeparableSpaceβ€”isEmpty_or_nonempty
TopologicalSpace.Countable.to_separableSpace
Encodable.countable
TopologicalSpace.exists_countable_dense
Set.Countable.image
Topology.IsInducing.dense_iff
Dense.inter_open_nonempty
IsOpen.inter
isOpen_range
Set.mem_range_self
Function.apply_invFun_apply
Set.mem_image_of_mem

IsTopologicalBasis

Theorems

NameKindAssumesProvesValidatesDepends On
iInf πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisiInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
setOf
Set
Finset
Set.iInter
Finset.instMembership
β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
isOpen_biInter_finset
IsOpen.mono
TopologicalSpace.IsTopologicalBasis.isOpen
iInf_le
Filter.HasBasis.mem_iff
Filter.HasBasis.iInf'
TopologicalSpace.IsTopologicalBasis.nhds_hasBasis
nhds_iInf
IsOpen.mem_nhds
Set.iInter_congr_Prop
iInf_induced πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisiInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
TopologicalSpace.induced
setOf
Set
Finset
Set.iInter
Finset.instMembership
Set.preimage
β€”Set.mem_image_of_mem
Set.iInterβ‚‚_congr
Function.sometimes_spec
iInf
TopologicalSpace.IsTopologicalBasis.induced

Pairwise

Theorems

NameKindAssumesProvesValidatesDepends On
countable_of_isOpen_disjoint πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsOpen
Set.Nonempty
Countableβ€”TopologicalSpace.exists_countable_dense
eq
Set.not_disjoint_iff
Set.Countable.to_subtype
Function.Injective.countable
Function.Injective.codRestrict
Dense.exists_mem_open

SecondCountableTopology

Theorems

NameKindAssumesProvesValidatesDepends On
is_open_generated_countable πŸ“–mathematicalβ€”Set.Countable
Set
TopologicalSpace.generateFrom
β€”β€”

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable πŸ“–mathematicalβ€”TopologicalSpace.IsSeparableβ€”subset_closure

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable πŸ“–mathematicalβ€”TopologicalSpace.IsSeparableβ€”Set.Countable.isSeparable
countable

Set.PairwiseDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
countable_of_isOpen πŸ“–mathematicalSet.PairwiseDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsOpen
Set.Nonempty
Set.Countableβ€”Pairwise.countable_of_isOpen_disjoint
Set.Pairwise.subtype
countable_of_nonempty_interior πŸ“–mathematicalSet.PairwiseDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Nonempty
interior
Set.Countableβ€”countable_of_isOpen
mono
interior_subset
isOpen_interior

TopologicalSpace

Definitions

NameCategoryTheorems
IsSeparable πŸ“–MathDef
19 mathmath: isSeparable_range_derivWithin, isSeparable_union, MeasureTheory.StronglyMeasurable.isSeparable_range, TotallyBounded.isSeparable, Dense.isSeparable_iff, aestronglyMeasurable_iff_aemeasurable_separable, stronglyMeasurable_iff_measurable_separable, IsSeparable.of_subtype, IsCompact.isSeparable, isSeparable_iUnion, IsSeparable.of_separableSpace, isSeparable_range_deriv, Set.Countable.isSeparable, Set.Finite.isSeparable, isSeparable_closure, isSeparable_univ_iff, aestronglyMeasurable_iff_nullMeasurable_separable, MeasureTheory.AEStronglyMeasurable.isSeparable_ae_range, isSeparable_range
IsTopologicalBasis πŸ“–CompData
37 mathmath: IsTopologicalBasis.of_hasBasis_nhds, CompletelyRegularSpace.isTopologicalBasis_clopens_of_cardinalMk_lt_continuum, AlgebraicGeometry.Scheme.affineBasisCover_is_basis, MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top, PrimitiveSpectrum.isTopologicalBasis_relativeLower, CompleteType.isTopologicalBasis_range_typesWith, PiNat.isTopologicalBasis_cylinders, Topology.IsUpper.isTopologicalBasis_insert_univ_subbasis, isTopologicalBasis_of_subbasis_of_inter, Ctop.Realizer.is_basis, isTopologicalBasis_of_isOpen_of_nhds, isTopologicalBasis_opens, Real.isTopologicalBasis_Ioo_rat, Topology.IsLower.isTopologicalBasis, loc_compact_Haus_tot_disc_of_zero_dim, ultrafilterBasis_is_basis, isTopologicalBasis_isClopen, PrespectralSpace.isTopologicalBasis, Topology.IsUpper.isTopologicalBasis, locallyConnectedSpace_iff_isTopologicalBasis_isOpen_isPreconnected, PrimeSpectrum.isTopologicalBasis_basic_opens, isTopologicalBasis_empty, isTopologicalBasis_singletons, IsTopologicalBasis.isOpen_isPreconnected, exists_countable_basis, prespectralSpace_iff, isTopologicalBasis_of_subbasis, ProjectiveSpectrum.isTopologicalBasis_basic_opens, isTopologicalBasis_clopens, isTopologicalBasis_biInter_Ioi_Iio_of_generateFrom, Ctop.toTopsp_isTopologicalBasis, isBasis_countableBasis, Filter.isTopologicalBasis_Iic_principal, IsLocalHomeomorph.isTopologicalBasis, Topology.IsLower.isTopologicalBasis_insert_univ_subbasis, isTopologicalBasis_of_subbasis_of_finiteInter, Topology.IsLawson.isTopologicalBasis
SeparableSpace πŸ“–CompData
29 mathmath: instSeparableSpaceQuot, instSeparableSpaceOrderDual, DomMulAct.instSeparableSpace, Dense.isSeparable_iff, UniformSpace.Completion.separableSpace_completion, MeasureTheory.StronglyMeasurable.separableSpace_range_union_singleton, Topology.IsQuotientMap.separableSpace, Topology.IsEmbedding.separableSpace, DenseRange.separableSpace, instSeparableSpaceSum, instSeparableSpaceProd, separableSpace_univ, IsSeparable.separableSpace, instSeparableSpaceQuotient, Topology.IsOpenEmbedding.separableSpace, IsOpenMap.separableSpace_of_isInducing, IsDenseInducing.separableSpace, isSeparable_univ_iff, IsOpenMap.separableSpace_of_injective, DomAddAct.instSeparableSpace, SeparableSpace.of_denseRange, SecondCountableTopology.to_separableSpace, separableSpace_sum_iff, separableSpace_iff, DenseRange.separableSpace', Countable.to_separableSpace, separableSpace_iff_countable, ContinuousMap.instSeparableSpace, IsDenseEmbedding.separableSpace
countableBasis πŸ“–CompOp
4 mathmath: countable_countableBasis, empty_notMem_countableBasis, isBasis_countableBasis, eq_generateFrom_countableBasis
denseSeq πŸ“–CompOp
1 mathmath: denseRange_denseSeq
encodableCountableBasis πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
countable_countableBasis πŸ“–mathematicalβ€”Set.Countable
Set
countableBasis
β€”exists_countable_basis
countable_cover_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.Countable
Set.iUnion
Set.instMembership
Set.univ
β€”isOpen_iUnion_countable
isOpen_interior
mem_interior_iff_mem_nhds
Set.eq_univ_of_subset
Set.iUnionβ‚‚_mono
interior_subset
countable_cover_nhdsWithin πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
Set.instHasSubset
Set.Countable
Set.iUnion
Set.instMembership
β€”preimage_coe_mem_nhds_subtype
countable_cover_nhds
Subtype.secondCountableTopology
Subtype.coe_image_subset
Set.Countable.image
Set.biUnion_image
denseRange_denseSeq πŸ“–mathematicalβ€”DenseRange
denseSeq
β€”exists_dense_seq
empty_notMem_countableBasis πŸ“–mathematicalβ€”Set
Set.instMembership
countableBasis
Set.instEmptyCollection
β€”exists_countable_basis
eq_generateFrom_countableBasis πŸ“–mathematicalβ€”generateFrom
countableBasis
β€”IsTopologicalBasis.eq_generateFrom
isBasis_countableBasis
exists_countable_basis πŸ“–mathematicalβ€”Set.Countable
Set
Set.instMembership
Set.instEmptyCollection
IsTopologicalBasis
β€”SecondCountableTopology.is_open_generated_countable
Set.Countable.mono
Set.diff_subset
Set.Countable.image
Set.countable_setOf_finite_subset
Set.notMem_diff_of_mem
IsTopologicalBasis.diff_empty
isTopologicalBasis_of_subbasis
exists_countable_dense πŸ“–mathematicalβ€”Set.Countable
Dense
β€”SeparableSpace.exists_countable_dense
exists_countable_of_generateFrom πŸ“–mathematicalgenerateFromSet
Set.instHasSubset
Set.Countable
β€”isTopologicalBasis_of_subbasis
IsTopologicalBasis.exists_countable
Set.Countable.biUnion
Set.Finite.countable
le_antisymm
le_generateFrom_iff_subset_isOpen
isOpen_generateFrom_of_mem
IsTopologicalBasis.eq_generateFrom
Set.sInter_eq_biInter
Set.Finite.isOpen_biInter
Function.sometimes_spec
exists_dense_seq πŸ“–mathematicalβ€”DenseRangeβ€”exists_countable_dense
Set.countable_iff_exists_subset_range
Dense.mono
firstCountableTopology_induced πŸ“–mathematicalβ€”FirstCountableTopology
induced
β€”Filter.comap.isCountablyGenerated
FirstCountableTopology.nhds_generated_countable
nhds_induced
instFirstCountableTopologyForallOfCountable πŸ“–mathematicalFirstCountableTopologyPi.topologicalSpaceβ€”nhds_pi
Filter.pi.isCountablyGenerated
FirstCountableTopology.nhds_generated_countable
instFirstCountableTopologyProd πŸ“–mathematicalβ€”FirstCountableTopology
instTopologicalSpaceProd
β€”nhds_prod_eq
Filter.prod.isCountablyGenerated
FirstCountableTopology.nhds_generated_countable
instSecondCountableTopologyForallOfCountable πŸ“–mathematicalSecondCountableTopologyPi.topologicalSpaceβ€”secondCountableTopology_iInf
secondCountableTopology_induced
instSecondCountableTopologyOfCountableOfFirstCountableTopology πŸ“–mathematicalβ€”SecondCountableTopologyβ€”Set.countable_range
instCountableProd
instCountableNat
le_antisymm
le_generateFrom_iff_subset_isOpen
le_iff_nhds
Filter.HasBasis.ge_iff
Filter.HasAntitoneBasis.toHasBasis
IsOpen.mem_nhds
isOpen_generateFrom_of_mem
Filter.HasBasis.exists_antitone_subbasis
FirstCountableTopology.nhds_generated_countable
nhds_basis_opens
instSecondCountableTopologyProd πŸ“–mathematicalβ€”SecondCountableTopology
instTopologicalSpaceProd
β€”IsTopologicalBasis.secondCountableTopology
IsTopologicalBasis.prod
isBasis_countableBasis
Set.Countable.image2
countable_countableBasis
instSecondCountableTopologySigmaOfCountable πŸ“–mathematicalSecondCountableTopologyinstTopologicalSpaceSigmaβ€”IsTopologicalBasis.sigma
isBasis_countableBasis
Set.countable_iUnion
Set.Countable.image
countable_countableBasis
IsTopologicalBasis.secondCountableTopology
instSecondCountableTopologySum πŸ“–mathematicalβ€”SecondCountableTopology
instTopologicalSpaceSum
β€”IsTopologicalBasis.sum
isBasis_countableBasis
Set.Countable.union
Set.Countable.image
countable_countableBasis
IsTopologicalBasis.secondCountableTopology
instSeparableSpaceForallOfCountable πŸ“–mathematicalSeparableSpacePi.topologicalSpaceβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Countable.to_separableSpace
Finite.to_countable
Finite.of_subsingleton
Nontrivial.to_nonempty
Set.countable_range
instCountableSigma
Finset.countable
instCountableForallOfFinite
Finite.of_fintype
Set.Countable.to_subtype
dense_iff_inter_open
isOpen_pi_iff
Dense.exists_mem_open
CanLift.prf
Pi.canLift
Subtype.canLift
Set.mem_range_self
exists_countable_dense
instSeparableSpaceProd πŸ“–mathematicalβ€”SeparableSpace
instTopologicalSpaceProd
β€”exists_countable_dense
Set.Countable.prod
Dense.prod
instSeparableSpaceQuot πŸ“–mathematicalβ€”SeparableSpace
instTopologicalSpaceQuot
β€”Topology.IsQuotientMap.separableSpace
instSeparableSpaceQuotient πŸ“–mathematicalβ€”SeparableSpace
instTopologicalSpaceQuotient
β€”Topology.IsQuotientMap.separableSpace
instSeparableSpaceSum πŸ“–mathematicalβ€”SeparableSpace
instTopologicalSpaceSum
β€”exists_countable_dense
Set.Countable.union
Set.Countable.image
closure_union
Topology.IsClosedEmbedding.closure_image_eq
Topology.IsClosedEmbedding.inl
Dense.closure_eq
Topology.IsClosedEmbedding.inr
Set.image_univ
Set.range_inl_union_range_inr
isBasis_countableBasis πŸ“–mathematicalβ€”IsTopologicalBasis
countableBasis
β€”exists_countable_basis
isCountablyGenerated_nhdsWithin πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
nhdsWithin
β€”Filter.Inf.isCountablyGenerated
Filter.isCountablyGenerated_principal
isOpen_biUnion_countable πŸ“–mathematicalIsOpenSet
Set.instHasSubset
Set.Countable
Set.iUnion
Set.instMembership
β€”Set.biUnion_image
isOpen_iUnion_countable
Set.Countable.image
Set.iUnion_subtype
isOpen_iUnion_countable πŸ“–mathematicalIsOpenSet.Countable
Set.iUnion
Set
Set.instMembership
β€”Set.countable_range
Set.Countable.to_subtype
Set.Countable.mono
Set.sep_subset
countable_countableBasis
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.iUnionβ‚‚_subset_iUnion
Set.sUnion_subset
IsTopologicalBasis.exists_subset_of_mem_open
isBasis_countableBasis
isOpen_of_mem_countableBasis πŸ“–mathematicalSet
Set.instMembership
countableBasis
IsOpenβ€”IsTopologicalBasis.isOpen
isBasis_countableBasis
isOpen_sUnion_countable πŸ“–mathematicalIsOpenSet.Countable
Set
Set.instHasSubset
Set.sUnion
β€”Set.sUnion_eq_biUnion
isOpen_biUnion_countable
isSeparable_closure πŸ“–mathematicalβ€”IsSeparable
closure
β€”IsClosed.closure_subset_iff
isClosed_closure
isSeparable_iUnion πŸ“–mathematicalβ€”IsSeparable
Set.iUnion
β€”IsSeparable.mono
Set.subset_iUnion
IsSeparable.iUnion
isSeparable_pi πŸ“–mathematicalIsSeparablePi.topologicalSpace
setOf
β€”IsSeparable.univ_pi
isSeparable_range πŸ“–mathematicalContinuousIsSeparable
Set.range
β€”IsSeparable.image
isSeparable_univ_iff
Set.image_univ
isSeparable_union πŸ“–mathematicalβ€”IsSeparable
Set
Set.instUnion
β€”Set.union_eq_iUnion
Bool.countable
isSeparable_univ_iff πŸ“–mathematicalβ€”IsSeparable
Set.univ
SeparableSpace
β€”Dense.isSeparable_iff
dense_univ
isTopologicalBasis_empty πŸ“–mathematicalβ€”IsTopologicalBasis
Set
Set.instEmptyCollection
IsEmpty
β€”Set.sUnion_empty
IsTopologicalBasis.sUnion_eq
Set.univ_eq_empty_iff
Unique.instSubsingleton
IsEmpty.instSubsingleton
isTopologicalBasis_of_cover πŸ“–mathematicalIsOpen
Set.iUnion
Set.univ
IsTopologicalBasis
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.imageβ€”isTopologicalBasis_of_isOpen_of_nhds
IsOpen.isOpenMap_subtype_val
IsTopologicalBasis.isOpen
Set.iUnion_eq_univ_iff
CanLift.prf
Subtype.canLift
IsTopologicalBasis.exists_subset_of_mem_open
IsOpen.preimage
continuous_subtype_val
Set.mem_iUnion
Set.mem_image_of_mem
Set.image_subset_iff
isTopologicalBasis_of_isOpen_of_nhds πŸ“–mathematicalIsOpen
Set
Set.instMembership
Set.instHasSubset
IsTopologicalBasisβ€”IsTopologicalBasis.of_hasBasis_nhds
Filter.HasBasis.to_hasBasis'
nhds_basis_opens
IsOpen.mem_nhds
isTopologicalBasis_of_subbasis πŸ“–mathematicalgenerateFromIsTopologicalBasis
Set.image
Set
Set.sInter
setOf
Set.Finite
Set.instHasSubset
β€”Set.Finite.union
Set.union_subset
Set.sInter_union
Set.Subset.rfl
Set.sUnion_image
Set.iUnionβ‚‚_eq_univ_iff
Set.finite_empty
Set.empty_subset
Set.sInter_empty
Set.mem_univ
le_antisymm
le_generateFrom
Set.Finite.isOpen_sInter
generateFrom_anti
Set.sInter_singleton
Set.finite_singleton
Set.singleton_subset_iff
isTopologicalBasis_of_subbasis_of_finiteInter πŸ“–mathematicalgenerateFrom
FiniteInter
IsTopologicalBasisβ€”le_antisymm
Set.sInter_singleton
CanLift.prf
Set.instCanLiftFinsetCoeFinite
FiniteInter.finiteInter_mem
isTopologicalBasis_of_subbasis
isTopologicalBasis_of_subbasis_of_inter πŸ“–mathematicalgenerateFrom
Set
Set.instMembership
Set.instInter
IsTopologicalBasis
Set.instInsert
Set.univ
β€”isTopologicalBasis_of_subbasis_of_finiteInter
generateFrom_insert_univ
FiniteInter.mkβ‚‚
isTopologicalBasis_opens πŸ“–mathematicalβ€”IsTopologicalBasis
setOf
Set
IsOpen
β€”isTopologicalBasis_of_isOpen_of_nhds
nonempty_of_mem_countableBasis πŸ“–mathematicalSet
Set.instMembership
countableBasis
Set.Nonemptyβ€”Set.nonempty_iff_ne_empty
empty_notMem_countableBasis
secondCountableTopology_iInf πŸ“–mathematicalSecondCountableTopologyiInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”eq_generateFrom_countableBasis
generateFrom_iUnion
SecondCountableTopology.mk'
Set.countable_iUnion
countable_countableBasis
secondCountableTopology_induced πŸ“–mathematicalβ€”SecondCountableTopology
induced
β€”SecondCountableTopology.is_open_generated_countable
Set.Countable.image
induced_generateFrom_eq
secondCountableTopology_of_countable_cover πŸ“–β€”SecondCountableTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
IsOpen
Set.iUnion
Set.univ
β€”β€”IsTopologicalBasis.secondCountableTopology
isTopologicalBasis_of_cover
isBasis_countableBasis
Set.countable_iUnion
Set.Countable.image
countable_countableBasis
separableSpace_iff πŸ“–mathematicalβ€”SeparableSpace
Set.Countable
Dense
β€”β€”
separableSpace_iff_countable πŸ“–mathematicalβ€”SeparableSpace
Countable
β€”β€”
separableSpace_sum_iff πŸ“–mathematicalβ€”SeparableSpace
instTopologicalSpaceSum
β€”Topology.IsOpenEmbedding.separableSpace
Topology.IsOpenEmbedding.inl
Topology.IsOpenEmbedding.inr
instSeparableSpaceSum

TopologicalSpace.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
to_separableSpace πŸ“–mathematicalβ€”TopologicalSpace.SeparableSpaceβ€”Set.countable_univ
dense_univ

TopologicalSpace.FirstCountableTopology

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_subseq πŸ“–mathematicalβ€”StrictMono
Nat.instPreorder
Filter.Tendsto
Filter.atTop
nhds
β€”Filter.subseq_tendsto_of_neBot
FirstCountableTopology.nhds_generated_countable

TopologicalSpace.IsSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalTopologicalSpace.IsSeparableclosureβ€”TopologicalSpace.isSeparable_closure
iUnion πŸ“–mathematicalTopologicalSpace.IsSeparableSet.iUnionβ€”Set.countable_iUnion
Set.iUnion_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
closure_mono
Set.subset_iUnion
image πŸ“–mathematicalTopologicalSpace.IsSeparable
Continuous
Set.imageβ€”Set.Countable.image
Set.image_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
closure_subset_preimage_closure_image
mono πŸ“–β€”TopologicalSpace.IsSeparable
Set
Set.instHasSubset
β€”β€”HasSubset.Subset.trans
Set.instIsTransSubset
of_separableSpace πŸ“–mathematicalβ€”TopologicalSpace.IsSeparableβ€”mono
TopologicalSpace.isSeparable_univ_iff
Set.subset_univ
of_subtype πŸ“–mathematicalβ€”TopologicalSpace.IsSeparableβ€”Subtype.range_coe_subtype
TopologicalSpace.isSeparable_range
continuous_subtype_val
prod πŸ“–mathematicalTopologicalSpace.IsSeparableinstTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
β€”Set.Countable.prod
closure_prod_eq
Set.prod_mono
union πŸ“–mathematicalTopologicalSpace.IsSeparableSet
Set.instUnion
β€”TopologicalSpace.isSeparable_union
univ_pi πŸ“–mathematicalTopologicalSpace.IsSeparablePi.topologicalSpace
Set.pi
Set.univ
β€”Set.eq_empty_or_nonempty
Set.Countable.isSeparable
Set.countable_empty
Set.countable_range
instCountableSigma
Finset.countable
instCountableForallOfFinite
Finite.of_fintype
Set.Countable.to_subtype
mem_closure_iff
isOpen_pi_iff
Set.mem_range_self

TopologicalSpace.IsTopologicalBasis

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_iff πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisContinuous
IsOpen
Set.preimage
β€”eq_generateFrom
continuous_generateFrom_iff
dense_iff πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisDense
Set.Nonempty
Set
Set.instInter
β€”mem_closure_iff
diff_empty πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisSet
Set.instSDiff
Set.instSingletonSet
Set.instEmptyCollection
β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
isOpen
isOpen_iff
Set.notMem_empty
eq_generateFrom πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisTopologicalSpace.generateFromβ€”β€”
eq_of_forall_subset_iff πŸ“–β€”TopologicalSpace.IsTopologicalBasis
IsOpen
Set
Set.instHasSubset
β€”β€”open_eq_sUnion'
Set.ext
exists_countable πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisSet
Set.instHasSubset
Set.Countable
β€”exists_countable_biUnion_of_isOpen
isOpen
TopologicalSpace.isBasis_countableBasis
Set.Countable.biUnion
TopologicalSpace.countable_countableBasis
TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
isOpen_iff
Set.Subset.trans
Set.subset_iUnionβ‚‚_of_subset
Set.Subset.refl
Eq.subset
Set.instReflSubset
Function.sometimes_spec
exists_countable_biUnion_of_isOpen πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
IsOpen
Set
Set.instHasSubset
Set.Countable
Set.iUnion
Set.instMembership
β€”exists_subset_of_mem_open
TopologicalSpace.isOpen_iUnion_countable
isOpen
Set.Countable.image
Set.biUnion_image
Set.Subset.antisymm
Set.iUnion_coe_set
Set.iUnion_congr_Prop
Function.sometimes_spec
exists_nonempty_subset πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
Set.Nonempty
IsOpen
Set
Set.instMembership
Set.instHasSubset
β€”exists_subset_of_mem_open
exists_subset_inter πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
Set
Set.instMembership
Set.instInter
Set.instHasSubsetβ€”β€”
exists_subset_of_mem_open πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
Set
Set.instMembership
IsOpen
Set.instHasSubsetβ€”mem_nhds_iff
IsOpen.mem_nhds
induced πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisTopologicalSpace.induced
Set.image
Set
Set.preimage
β€”isInducing
Topology.IsInducing.induced
inf πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisTopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Set.image2
Set
Set.instInter
β€”of_hasBasis_nhds
nhds_inf
Filter.HasBasis.to_image_id
Filter.HasBasis.inf
nhds_hasBasis
inf_induced πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisTopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
TopologicalSpace.induced
Set.image2
Set
Set.instInter
Set.preimage
β€”Set.image2_image_right
Set.image2_image_left
inf
induced
insert_empty πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisSet
Set.instInsert
Set.instEmptyCollection
β€”of_isOpen_of_subset
isOpen_empty
isOpen
Set.subset_insert
isInducing πŸ“–mathematicalTopology.IsInducing
TopologicalSpace.IsTopologicalBasis
Set.image
Set
Set.preimage
β€”of_hasBasis_nhds
Set.image_congr
Filter.HasBasis.to_image_id
Topology.IsInducing.basis_nhds
nhds_hasBasis
isOpen πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
Set
Set.instMembership
IsOpenβ€”eq_generateFrom
isOpenMap_iff πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisIsOpenMap
IsOpen
Set.image
β€”isOpen
open_eq_sUnion'
Set.sUnion_eq_iUnion
Set.image_iUnion
isOpen_iUnion
isOpen_iff πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisIsOpen
Set
Set.instMembership
Set.instHasSubset
β€”mem_nhds_iff
isOpen_induction πŸ“–β€”TopologicalSpace.IsTopologicalBasis
Set.sUnion
IsOpen
β€”β€”open_eq_sUnion
isQuotientMap πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
Topology.IsQuotientMap
IsOpenMap
Set.image
Set
β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
isOpen
Topology.IsQuotientMap.surjective
IsOpen.preimage
Topology.IsQuotientMap.continuous
exists_subset_of_mem_open
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_mono
Set.image_preimage_subset
mem_closure_iff πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisSet
Set.instMembership
closure
Set.Nonempty
Set.instInter
β€”mem_closure_iff_nhds_basis'
nhds_hasBasis
mem_nhds πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
Set
Set.instMembership
Filter
Filter.instMembership
nhds
β€”IsOpen.mem_nhds
isOpen
mem_nhds_iff πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisSet
Filter
Filter.instMembership
nhds
Set.instMembership
Set.instHasSubset
β€”eq_generateFrom
TopologicalSpace.nhds_generateFrom
Filter.biInf_sets_eq
exists_subset_inter
Filter.le_principal_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_left
Set.inter_subset_right
Set.eq_univ_iff_forall
sUnion_eq
nhds_hasBasis πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisFilter.HasBasis
Set
nhds
Set.instMembership
β€”mem_nhds_iff
of_hasBasis_nhds πŸ“–mathematicalFilter.HasBasis
Set
nhds
Set.instMembership
TopologicalSpace.IsTopologicalBasisβ€”Filter.HasBasis.mem_iff
Filter.inter_mem
Filter.HasBasis.mem_of_mem
Set.sUnion_eq_univ_iff
Filter.HasBasis.ex_mem
TopologicalSpace.ext_nhds
TopologicalSpace.nhds_generateFrom
iInf_congr_Prop
Filter.HasBasis.eq_biInf
of_isOpen_of_subset πŸ“–β€”IsOpen
TopologicalSpace.IsTopologicalBasis
Set
Set.instHasSubset
β€”β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
isOpen_iff
open_eq_iUnion πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
IsOpen
Set.iUnion
Set
Set.instMembership
β€”Set.sUnion_eq_iUnion
open_eq_sUnion'
open_eq_sUnion πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
IsOpen
Set
Set.instHasSubset
Set.sUnion
β€”open_eq_sUnion'
open_eq_sUnion' πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
IsOpen
Set.sUnion
setOf
Set
Set.instMembership
Set.instHasSubset
β€”Set.ext
exists_subset_of_mem_open
open_iff_eq_sUnion πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisIsOpen
Set
Set.instHasSubset
Set.sUnion
β€”open_eq_sUnion
isOpen_sUnion
isOpen
prod πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisinstTopologicalSpaceProd
Set.image2
Set
SProd.sprod
Set.instSProd
β€”inf_induced
quotient πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
IsOpenMap
instTopologicalSpaceQuotient
Set.image
Set
β€”isQuotientMap
isQuotientMap_quotient_mk'
sUnion_eq πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisSet.sUnion
Set.univ
β€”β€”
secondCountableTopology πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisSecondCountableTopologyβ€”eq_generateFrom
sigma πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisinstTopologicalSpaceSigma
Set.iUnion
Set
Set.image
β€”of_hasBasis_nhds
Sigma.nhds_eq
Set.image_congr
Filter.HasBasis.to_image_id
Filter.HasBasis.map
nhds_hasBasis
subset_of_forall_subset πŸ“–β€”TopologicalSpace.IsTopologicalBasis
IsOpen
Set
Set.instHasSubset
β€”β€”open_eq_sUnion'
sum πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisinstTopologicalSpaceSum
Set
Set.instUnion
Set.image
β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
Topology.IsOpenEmbedding.isOpenMap
Topology.IsOpenEmbedding.inl
isOpen
Topology.IsOpenEmbedding.inr
exists_subset_of_mem_open
isOpen_sum_iff
Set.mem_union_left
Set.mem_image_of_mem
Set.image_subset_iff
Set.mem_union_right

TopologicalSpace.Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
secondCountableTopology πŸ“–mathematicalIsOpenMap
instTopologicalSpaceQuotient
SecondCountableTopologyβ€”Topology.IsQuotientMap.secondCountableTopology
isQuotientMap_quotient_mk'

TopologicalSpace.SecondCountableTopology

Theorems

NameKindAssumesProvesValidatesDepends On
mk' πŸ“–mathematicalβ€”SecondCountableTopology
TopologicalSpace.generateFrom
β€”β€”
to_firstCountableTopology πŸ“–mathematicalβ€”FirstCountableTopologyβ€”Filter.HasCountableBasis.isCountablyGenerated
TopologicalSpace.IsTopologicalBasis.nhds_hasBasis
TopologicalSpace.isBasis_countableBasis
Set.Countable.mono
Set.inter_subset_left
TopologicalSpace.countable_countableBasis
to_separableSpace πŸ“–mathematicalβ€”TopologicalSpace.SeparableSpaceβ€”Set.countable_range
Encodable.countable
TopologicalSpace.IsTopologicalBasis.dense_iff
TopologicalSpace.isBasis_countableBasis
Set.mem_range_self
TopologicalSpace.nonempty_of_mem_countableBasis

TopologicalSpace.SeparableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
exists_countable_dense πŸ“–mathematicalβ€”Set.Countable
Dense
β€”β€”
of_denseRange πŸ“–mathematicalDenseRangeTopologicalSpace.SeparableSpaceβ€”Set.countable_range

TopologicalSpace.Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
firstCountableTopology πŸ“–mathematicalβ€”FirstCountableTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”TopologicalSpace.firstCountableTopology_induced
secondCountableTopology πŸ“–mathematicalβ€”SecondCountableTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”TopologicalSpace.secondCountableTopology_induced

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
firstCountableTopology πŸ“–mathematicalTopology.IsEmbeddingFirstCountableTopologyβ€”Topology.IsInducing.firstCountableTopology
toIsInducing
secondCountableTopology πŸ“–mathematicalTopology.IsEmbeddingSecondCountableTopologyβ€”Topology.IsInducing.secondCountableTopology
toIsInducing
separableSpace πŸ“–mathematicalTopology.IsEmbeddingTopologicalSpace.SeparableSpaceβ€”secondCountableTopology
TopologicalSpace.SecondCountableTopology.to_separableSpace

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
firstCountableTopology πŸ“–mathematicalTopology.IsInducingFirstCountableTopologyβ€”eq_induced
TopologicalSpace.firstCountableTopology_induced
secondCountableTopology πŸ“–mathematicalTopology.IsInducingSecondCountableTopologyβ€”eq_induced
TopologicalSpace.secondCountableTopology_induced

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
separableSpace πŸ“–mathematicalTopology.IsOpenEmbeddingTopologicalSpace.SeparableSpaceβ€”IsOpenMap.separableSpace_of_injective
isOpenMap
Topology.IsEmbedding.injective
toIsEmbedding

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
secondCountableTopology πŸ“–mathematicalTopology.IsQuotientMap
IsOpenMap
SecondCountableTopologyβ€”TopologicalSpace.exists_countable_basis
Set.Countable.image
TopologicalSpace.IsTopologicalBasis.eq_generateFrom
TopologicalSpace.IsTopologicalBasis.isQuotientMap
separableSpace πŸ“–mathematicalTopology.IsQuotientMapTopologicalSpace.SeparableSpaceβ€”DenseRange.separableSpace
Function.Surjective.denseRange
surjective
continuous

(root)

Definitions

NameCategoryTheorems
FirstCountableTopology πŸ“–CompData
18 mathmath: WithSeminorms.firstCountableTopology, TopologicalSpace.instFirstCountableTopologyProd, instFirstCountableTopologyOrderDual, TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology, DiscreteTopology.firstCountableTopology, Rat.not_firstCountableTopology_opc, SchwartzMap.instFirstCountableTopology, AlexandrovDiscrete.toFirstCountable, QuotientAddGroup.instFirstCountableTopology, TopologicalSpace.SecondCountableTopology.to_firstCountableTopology, UniformSpace.firstCountableTopology, Topology.IsInducing.firstCountableTopology, QuotientGroup.instFirstCountableTopology, TopologicalSpace.Subtype.firstCountableTopology, Topology.IsEmbedding.firstCountableTopology, DomAddAct.instFirstCountableTopology, DomMulAct.instFirstCountableTopology, TopologicalSpace.firstCountableTopology_induced
SecondCountableTopology πŸ“–CompData
168 mathmath: DomAddAct.instSecondCountableTopology, LightCondensed.free_internallyProjective_iff_tensor_condition, LightProfinite.proj_comp_transitionMap, LightProfinite.Extend.functorOp_obj, LightCondensed.lanPresheafIso_hom, LightCondensed.isoFinYonedaComponents_hom_apply, Topology.IsEmbedding.secondCountableTopology, LightCondensed.ihomPoints_apply, TopologicalSpace.SecondCountableTopology.mk', LightCondensed.forget_obj_val_map, QuotientGroup.instSecondCountableTopology, SecondCountableTopology.of_separableSpace_orderTopology, Metric.Snowflaking.instSecondCountableTopology, LightCondensed.ihomPoints_symm_comp, instSecondCountableTopologyOfOrderTopologyOfCountable, LightCondSet.continuous_coinducingCoprod, LightCondSet.epi_iff_locallySurjective_on_lightProfinite, LightProfinite.instCountableClopensCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology, LightCondensed.isoFinYoneda_inv_app, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition, ModelWithCorners.secondCountableTopology, NNReal.instSecondCountableTopology, instFaithfulFintypeCatLightProfiniteToLightProfinite, LightCondensed.finYoneda_map, TopologicalSpace.instSecondCountableTopologyWithTop, LightCondMod.isDiscrete_tfae, QuotientAddGroup.instSecondCountableTopology, instPreservesEpimorphismsLightProfiniteLightCondSetLightProfiniteToLightCondSet, LightProfinite.instSecondCountableTopologyCarrierToTopAndTotallyDisconnectedSpace, LightCondensed.discrete_map, LightProfinite.proj_comp_transitionMapLE', LightProfinite.Extend.cocone_ΞΉ_app, Profinite.injective_of_light, LightCondSet.topCatAdjunctionUnit_val_app_apply, ContinuousConstSMul.secondCountableTopology, lightProfiniteToLightDiagram_map, LightProfinite.isClosedMap, TopologicalSpace.Subtype.secondCountableTopology, lightDiagramToLightProfinite_obj, LightProfinite.lightToProfinite_map_proj_eq, Homeomorph.secondCountableTopology, TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace, LightProfinite.effectiveEpi_iff_surjective, MeasureTheory.Lp.SecondCountableTopology, LightProfinite.continuous_iff_convergent, LightCondensed.internallyProjective_iff_tensor_condition, TopologicalSpace.Opens.instSecondCountableOpens, DiscreteTopology.secondCountableTopology_of_countable, LightProfinite.instPreservesEpimorphismsProfiniteLightToProfinite, LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology, LightProfinite.instCountableDiscreteQuotient, instPreservesFiniteLimitsLightProfiniteLightCondSetLightProfiniteToLightCondSet, LightProfinite.hasSheafify, LightCondMod.LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, LightProfinite.instWEqualsLocallyBijectiveCoherentTopology, TopologicalSpace.Quotient.secondCountableTopology, TopologicalSpace.IsSeparable.secondCountableTopology, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, TopologicalSpace.instSecondCountableTopologySum, DomMulAct.instSecondCountableTopology, instPreservesLimitsOfShapeLightProfiniteLightCondSetLightProfiniteToLightCondSetOfCountableCategory, LightCondensed.isoFinYonedaComponents_inv_comp, ChartedSpace.secondCountable_of_sigmaCompact, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition', ContinuousConstVAdd.secondCountableTopology, instFaithfulLightProfiniteLightCondSetLightProfiniteToLightCondSet, LightProfinite.Extend.functor_map, LightCondensed.instPreservesLimitsOfShapeOppositeLightProfiniteDiscreteCarrier, EReal.instSecondCountableTopology, Topology.IsQuotientMap.secondCountableTopology, LightCondensed.forget_map_val_app, LightCondensed.isoLocallyConstantOfIsColimit_inv, FintypeCat.toLightProfinite_map_hom_hom_apply, Topology.IsInducing.secondCountableTopology, LightProfinite.injective, LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite, LightProfinite.surjective_transitionMapLE, exists_opensMeasurableSpace_of_countablySeparated, LightProfinite.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology, LightCondensed.free_internallyProjective_iff_tensor_condition', LightProfinite.instHasCountableLimits, LightProfinite.forget_reflectsIsomorphisms, LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology, UniformSpace.secondCountable_of_separable, instIsEquivalenceLightDiagramLightProfiniteLightDiagramToLightProfinite, EMetric.secondCountable_of_sigmaCompact, TopologicalSpace.secondCountableTopology_induced, LightProfinite.Extend.functorOp_map, LightProfinite.instTotallyDisconnectedSpaceCarrierToTopAndSecondCountableTopology, instEssentiallySmallLightProfinite, LightCondensed.hom_ext_iff, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply, TopologicalSpace.instSecondCountableTopologyOfCountableOfFirstCountableTopology, LightCondensed.underlying_obj, OpenPartialHomeomorph.secondCountableTopology_source, Rat.not_secondCountableTopology_opc, LightCondSet.hom_naturality_apply, LightProfinite.instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus, LightProfinite.instPreservesLimitsOfShapeOppositeNatForgetContinuousMapCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology, LightCondensed.equalizerCondition, LightCondMod.hom_naturality_apply, LightCondensed.ihomPoints_symm_apply, LightCondensed.discrete_obj, ContinuousMap.instSecondCountableTopology, lightProfiniteToLightDiagram_obj, LightCondMod.LocallyConstant.instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, LightCondensed.lanPresheafNatIso_hom_app, lightCondSetToTopCat_obj_carrier, GromovHausdorff.instSecondCountableTopologyGHSpace, ContinuousMap.secondCountableTopology, LightProfinite.Extend.cocone_pt, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, instSecondCountableTopologyContinuousLinearMapIdOfFiniteDimensional, LightCondSet.LocallyConstant.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopologySubtypeToTop, UniformSpace.secondCountable_of_almost_dense_set, EMetric.secondCountable_of_almost_dense_set, instFullLightProfiniteLightCondSetLightProfiniteToLightCondSet, lightDiagramToLightProfinite_map, LightProfinite.surjective_transitionMap, Metric.secondCountable_of_countable_discretization, SecondCountableTopologyEither.out, UpperHalfPlane.instSecondCountableTopology, Metric.secondCountable_of_almost_dense_set, LightCondensed.lanPresheafExt_inv, LightProfinite.epi_iff_surjective, TopologicalSpace.Clopens.countable_iff_secondCountable, instSecondCountableTopologyReal, LightCondMod.LocallyConstant.instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf, LightCondSet.isDiscrete_tfae, LightCondSet.topCatAdjunctionUnit_val_app, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, LightProfinite.instPreregular, LightCondMod.LocallyConstant.instHasSheafifyLightProfiniteCoherentTopologyModuleCat, LightCondensed.id_val, LightProfinite.Extend.functor_obj, LightCondensed.isoFinYoneda_hom_app, ENNReal.instSecondCountableTopology, LightProfinite.proj_surjective, PolishSpace.toSecondCountableTopology, LightProfinite.proj_comp_transitionMapLE, LightProfinite.instEpiAppOppositeNatΟ€AsLimitCone, LightCondMod.LocallyConstant.instFaithfulSheafLightProfiniteCoherentTopologyTypeConstantSheaf, LightCondensed.instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone, LightCondensed.internallyProjective_iff_tensor_condition', LightProfinite.hasSheafify_type, LightCondensed.comp_val, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom, ChartedSpace.secondCountable_of_countable_cover, LightCondensed.underlying_map, TopologicalSpace.Opens.CompleteCopy.instSecondCountableTopology, LightCondMod.isDiscrete_iff_isDiscrete_forget, instIsEquivalenceLightProfiniteLightDiagramLightProfiniteToLightDiagram, LightCondSet.toTopCatMap_hom_apply, LightCondensed.lanPresheafExt_hom, exists_borelSpace_of_countablyGenerated_of_separatesPoints, LightProfinite.proj_comp_transitionMap', instFullFintypeCatLightProfiniteToLightProfinite, secondCountable_of_proper, TopologicalSpace.IsTopologicalBasis.secondCountableTopology, Finite.toSecondCountableTopology, instSecondCountableTopologyOrderDual, WithLp.secondCountableTopology, LightCondensed.instPreservesFiniteProductsOppositeLightProfiniteVal, TopologicalSpace.instSecondCountableTopologyProd, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology, TopologicalSpace.NonemptyCompacts.instSecondCountableTopology

Theorems

NameKindAssumesProvesValidatesDepends On
exists_countable_dense_bot_top πŸ“–mathematicalβ€”Set.Countable
Dense
Set
Set.instMembership
β€”Dense.exists_countable_dense_subset_bot_top
separableSpace_univ
dense_univ
isOpenMap_eval πŸ“–mathematicalβ€”IsOpenMap
Pi.topologicalSpace
Function.eval
β€”TopologicalSpace.IsTopologicalBasis.isOpenMap_iff
isTopologicalBasis_pi
TopologicalSpace.isTopologicalBasis_opens
Set.eq_empty_or_nonempty
Set.image_congr
Set.image_empty
Set.eval_image_pi
Set.eval_image_pi_of_notMem
isOpen_univ
isTopologicalBasis_pi πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisPi.topologicalSpace
setOf
Set
Finset
Set.pi
SetLike.coe
Finset.instSetLike
β€”Set.pi_def
IsTopologicalBasis.iInf_induced
isTopologicalBasis_singletons πŸ“–mathematicalβ€”TopologicalSpace.IsTopologicalBasis
setOf
Set
Set.instSingletonSet
β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
isOpen_discrete
Set.mem_singleton
Set.singleton_subset_iff
isTopologicalBasis_subtype πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisinstTopologicalSpaceSubtype
Set.image
Set
Set.preimage
β€”TopologicalSpace.IsTopologicalBasis.isInducing
separableSpace_univ πŸ“–mathematicalβ€”TopologicalSpace.SeparableSpace
Set.Elem
Set.univ
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”DenseRange.separableSpace
Function.Surjective.denseRange
Equiv.surjective
continuous_id

---

← Back to Index