Documentation Verification Report

Basic

📁 Source: Mathlib/Topology/Basic.lean

Statistics

MetricCount
DefinitionsofClosed
1
Theoremsand, inter, isLocallyClosed, not, sdiff, union, and, isClosed_compl, isLocallyClosed, sdiff, union, isClosed_biUnion, isOpen_biInter, isOpen_sInter, ext, ext_iff, ext_iff_isClosed, ext_isClosed, isClosed_biInter, isClosed_biUnion_finset, isClosed_compl_iff, isClosed_const, isClosed_empty, isClosed_iInter, isClosed_iUnion_of_finite, isClosed_imp, isClosed_sInter, isClosed_univ, isOpen_biInter_finset, isOpen_biUnion, isOpen_compl_iff, isOpen_const, isOpen_empty, isOpen_fold, isOpen_iInter_of_finite, isOpen_iUnion, isOpen_iff_of_cover, isOpen_mk, le_nhds_lim, limUnder_of_not_tendsto, tendsto_nhds_limUnder
41
Total42

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
and 📖mathematicalIsClosed
setOf
inter
inter 📖mathematicalIsClosed
Set
Set.instInter
isOpen_compl_iff
Set.compl_inter
IsOpen.union
isLocallyClosed 📖mathematicalIsLocallyClosedisOpen_univ
Set.univ_inter
not 📖mathematicalIsOpen
setOf
isOpen_compl_iff
sdiff 📖mathematicalIsOpenIsClosed
Set
Set.instSDiff
inter
isClosed_compl_iff
union 📖mathematicalIsClosed
Set
Set.instUnion
Set.compl_union
IsOpen.inter

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
and 📖IsOpen
setOf
inter
isClosed_compl 📖mathematicalIsOpenIsClosed
Compl.compl
Set
Set.instCompl
isClosed_compl_iff
isLocallyClosed 📖mathematicalIsOpenIsLocallyClosedisClosed_univ
Set.inter_univ
sdiff 📖mathematicalIsOpenSet
Set.instSDiff
inter
IsClosed.isOpen_compl
union 📖mathematicalIsOpenSet
Set.instUnion
Set.union_eq_iUnion
isOpen_iUnion

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_biUnion 📖mathematicalIsClosedSet.iUnion
Set
Set.instMembership
Set.compl_iUnion
isOpen_biInter
isOpen_biInter 📖mathematicalIsOpenSet.iInter
Set
Set.instMembership
isOpen_sInter
image
Set.forall_mem_image
Set.sInter_image
isOpen_sInter 📖mathematicalIsOpenSet.sInterinduction_on
Set.sInter_empty
isOpen_univ
Set.sInter_insert
IsOpen.inter

TopologicalSpace

Definitions

NameCategoryTheorems
ofClosed 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖IsOpen
ext_iff 📖mathematicalIsOpenext
ext_iff_isClosed 📖mathematicalIsClosedext_iff
Function.Surjective.forall
compl_surjective
isOpen_compl_iff
ext_isClosed 📖IsClosedext_iff_isClosed

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_biInter 📖mathematicalIsClosedSet.iInter
Set
Set.instMembership
isClosed_iInter
isClosed_biUnion_finset 📖mathematicalIsClosedSet.iUnion
Finset
Finset.instMembership
Set.Finite.isClosed_biUnion
Finset.finite_toSet
isClosed_compl_iff 📖mathematicalIsClosed
Compl.compl
Set
Set.instCompl
IsOpen
isOpen_compl_iff
compl_compl
isClosed_const 📖mathematicalIsClosed
setOf
isOpen_const
isClosed_empty 📖mathematicalIsClosed
Set
Set.instEmptyCollection
isClosed_const
isClosed_iInter 📖mathematicalIsClosedSet.iInterisClosed_sInter
Set.forall_mem_range
isClosed_iUnion_of_finite 📖mathematicalIsClosedSet.iUnionSet.compl_iUnion
isOpen_iInter_of_finite
isClosed_imp 📖mathematicalIsOpen
setOf
IsClosedIsClosed.union
IsOpen.isClosed_compl
isClosed_sInter 📖mathematicalIsClosedSet.sInterSet.compl_sInter
Set.sUnion_image
isOpen_biUnion
isClosed_univ 📖mathematicalIsClosed
Set.univ
isClosed_const
isOpen_biInter_finset 📖mathematicalIsOpenSet.iInter
Finset
Finset.instMembership
Set.Finite.isOpen_biInter
Finset.finite_toSet
isOpen_biUnion 📖mathematicalIsOpenSet.iUnion
Set
Set.instMembership
isOpen_iUnion
isOpen_compl_iff 📖mathematicalIsOpen
Compl.compl
Set
Set.instCompl
IsClosed
IsClosed.isOpen_compl
isOpen_const 📖mathematicalIsOpen
setOf
isOpen_empty 📖mathematicalIsOpen
Set
Set.instEmptyCollection
Set.sUnion_empty
isOpen_sUnion
isOpen_fold 📖mathematicalTopologicalSpace.IsOpen
IsOpen
isOpen_iInter_of_finite 📖mathematicalIsOpenSet.iInterSet.Finite.isOpen_sInter
Set.finite_range
Set.forall_mem_range
isOpen_iUnion 📖mathematicalIsOpenSet.iUnionisOpen_sUnion
Set.forall_mem_range
isOpen_iff_of_cover 📖mathematicalIsOpen
Set.iUnion
Set.univ
Set
Set.instInter
IsOpen.inter
Set.inter_univ
Set.inter_comm
Set.iUnion_inter
isOpen_iUnion
isOpen_mk 📖mathematicalSet.univ
Set
Set.instInter
Set.sUnion
IsOpen
le_nhds_lim 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
lim
limUnder_of_not_tendsto 📖mathematicalFilter.Tendsto
nhds
limUnder
tendsto_nhds_limUnder 📖mathematicalFilter.Tendsto
nhds
limUnderle_nhds_lim

---

← Back to Index