Documentation Verification Report

Absorbs

πŸ“ Source: Mathlib/Topology/Bornology/Absorbs.lean

Statistics

MetricCount
DefinitionsAbsorbent, Absorbs, absorbing
3
Theoremsabsorbs, absorbs_finite, mono, vadd_absorbs, zero_mem, add, biInter, biUnion, biUnion_finset, empty, eventually, iInter, iUnion, inter, mono, mono_left, mono_right, neg_neg, of_boundedSpace, of_neg_neg, restrict_scalars, sInter, sUnion, sub, union, univ, zero, mem_absorbing, absorbs_biInter, absorbs_biUnion, absorbs_sInter, absorbs_sUnion, absorbent_iff_forall_absorbs_singleton, absorbent_iff_inv_smul, absorbent_univ, absorbs_biUnion_finset, absorbs_iInter, absorbs_iUnion, absorbs_iff_eventually_cobounded_mapsTo, absorbs_inter, absorbs_neg_neg, absorbs_union, absorbs_zero_iff, eventually_cobounded_mapsTo
44
Total47

Absorbent

Theorems

NameKindAssumesProvesValidatesDepends On
absorbs πŸ“–mathematicalAbsorbentAbsorbs
Set
Set.instSingletonSet
β€”β€”
absorbs_finite πŸ“–mathematicalAbsorbentAbsorbsβ€”Set.biUnion_of_singleton
Absorbs.biUnion
absorbs
mono πŸ“–β€”Absorbent
Set
Set.instHasSubset
β€”β€”Absorbs.mono_left
vadd_absorbs πŸ“–mathematicalAbsorbent
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
DistribSMul.toSMulZeroClass
Absorbs
Set
Set.add
AddZero.toAdd
HVAdd.hVAdd
instHVAdd
Set.vaddSet
Add.toVAdd
β€”Set.singleton_vadd
Absorbs.add
zero_mem πŸ“–mathematicalAbsorbent
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
Set
Set.instMembership
β€”absorbs_zero_iff

Absorbs

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalAbsorbs
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
DistribSMul.toSMulZeroClass
Set
Set.add
AddZero.toAdd
β€”Filter.Eventually.mp
Filter.Eventually.mono
eventually
smul_add
Set.add_subset_add
biInter πŸ“–mathematicalAbsorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.iInter
Set
Set.instMembership
β€”Set.Finite.absorbs_biInter
biUnion πŸ“–mathematicalAbsorbsSet.iUnion
Set
Set.instMembership
β€”Set.Finite.absorbs_biUnion
biUnion_finset πŸ“–mathematicalAbsorbsSet.iUnion
Finset
Finset.instMembership
β€”absorbs_biUnion_finset
empty πŸ“–mathematicalβ€”Absorbs
Set
Set.instEmptyCollection
β€”β€”
eventually πŸ“–mathematicalAbsorbsFilter.Eventually
Set
Set.instHasSubset
Set.smulSet
Bornology.cobounded
β€”β€”
iInter πŸ“–mathematicalAbsorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.iInterβ€”absorbs_iInter
iUnion πŸ“–mathematicalAbsorbsSet.iUnionβ€”absorbs_iUnion
inter πŸ“–mathematicalAbsorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set
Set.instInter
β€”absorbs_inter
mono πŸ“–β€”Absorbs
Set
Set.instHasSubset
β€”β€”mono_right
mono_left
mono_left πŸ“–β€”Absorbs
Set
Set.instHasSubset
β€”β€”Filter.Eventually.mono
HasSubset.Subset.trans
Set.instIsTransSubset
Set.smul_set_mono
mono_right πŸ“–β€”Absorbs
Set
Set.instHasSubset
β€”β€”Filter.Eventually.mono
HasSubset.Subset.trans
Set.instIsTransSubset
neg_neg πŸ“–mathematicalAbsorbs
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Set
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”absorbs_neg_neg
of_boundedSpace πŸ“–mathematicalβ€”Absorbsβ€”Bornology.cobounded_eq_bot
of_neg_neg πŸ“–β€”Absorbs
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Set
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”absorbs_neg_neg
restrict_scalars πŸ“–β€”Absorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Filter.Tendsto
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Bornology.cobounded
β€”β€”Filter.Eventually.mono
Filter.Tendsto.eventually
smul_one_smul
Set.isScalarTower
sInter πŸ“–mathematicalAbsorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.sInterβ€”Set.Finite.absorbs_sInter
sUnion πŸ“–mathematicalAbsorbsSet.sUnionβ€”Set.Finite.absorbs_sUnion
sub πŸ“–mathematicalAbsorbs
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Set
Set.sub
SubNegMonoid.toSub
β€”sub_eq_add_neg
add
neg_neg
union πŸ“–mathematicalAbsorbsSet
Set.instUnion
β€”absorbs_union
univ πŸ“–mathematicalβ€”Absorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.univ
β€”Filter.Eventually.mono
Bornology.eventually_ne_cobounded
Set.smul_set_univβ‚€
Set.subset_univ
zero πŸ“–mathematicalSet
Set.instMembership
Absorbs
SMulZeroClass.toSMul
Set.zero
β€”Filter.Eventually.of_forall
Set.zero_subset
Set.zero_mem_smul_set

Filter

Definitions

NameCategoryTheorems
absorbing πŸ“–CompOp
2 mathmath: mem_absorbing, Bornology.isVonNBounded_iff_absorbing_le

Theorems

NameKindAssumesProvesValidatesDepends On
mem_absorbing πŸ“–mathematicalβ€”Set
Filter
instMembership
absorbing
Absorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”β€”

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
absorbs_biInter πŸ“–mathematicalβ€”Absorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.iInter
Set
Set.instMembership
β€”Filter.biInter_mem
absorbs_biUnion πŸ“–mathematicalβ€”Absorbs
Set.iUnion
Set
Set.instMembership
β€”β€”
absorbs_sInter πŸ“–mathematicalβ€”Absorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.sInter
β€”Filter.sInter_mem
absorbs_sUnion πŸ“–mathematicalβ€”Absorbs
Set.sUnion
β€”β€”

(root)

Definitions

NameCategoryTheorems
Absorbent πŸ“–MathDef
11 mathmath: absorbent_iff_eventually_nhdsNE_zero, Seminorm.absorbent_closedBall_zero, absorbent_univ, absorbent_nhds_zero, Seminorm.absorbent_ball_zero, absorbent_ball, absorbent_iff_forall_absorbs_singleton, Seminorm.absorbent_closedBall, absorbent_iff_inv_smul, Seminorm.absorbent_ball, absorbent_ball_zero
Absorbs πŸ“–MathDef
28 mathmath: absorbs_zero_iff, Filter.mem_absorbing, Absorbs.empty, Absorbent.absorbs, absorbs_inter, absorbs_biUnion_finset, Set.Finite.absorbs_sInter, Absorbs.of_boundedSpace, absorbs_iff_eventually_nhdsNE_zero, absorbs_iUnion, Bornology.isVonNBounded_iff, absorbs_iInter, absorbs_union, absorbs_iff_eventually_cobounded_mapsTo, Set.Finite.absorbs_biUnion, absorbs_iff_norm, Balanced.absorbs_self, Seminorm.ball_zero_absorbs_ball_zero, absorbent_iff_forall_absorbs_singleton, Absorbs.zero, Filter.HasBasis.isVonNBounded_iff, Absorbent.absorbs_finite, absorbs_iff_eventually_nhds_zero, Absorbs.of_norm, Absorbs.univ, Set.Finite.absorbs_biInter, absorbs_neg_neg, Set.Finite.absorbs_sUnion

Theorems

NameKindAssumesProvesValidatesDepends On
absorbent_iff_forall_absorbs_singleton πŸ“–mathematicalβ€”Absorbent
Absorbs
Set
Set.instSingletonSet
β€”β€”
absorbent_iff_inv_smul πŸ“–mathematicalβ€”Absorbent
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Filter.Eventually
Set
Set.instMembership
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
Bornology.cobounded
β€”β€”
absorbent_univ πŸ“–mathematicalβ€”Absorbent
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.univ
β€”Absorbs.univ
absorbs_biUnion_finset πŸ“–mathematicalβ€”Absorbs
Set.iUnion
Finset
Finset.instMembership
β€”Set.Finite.absorbs_biUnion
Finset.finite_toSet
absorbs_iInter πŸ“–mathematicalβ€”Absorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.iInter
β€”Filter.iInter_mem
absorbs_iUnion πŸ“–mathematicalβ€”Absorbs
Set.iUnion
β€”Set.Finite.absorbs_sUnion
Set.finite_range
Set.forall_mem_range
absorbs_iff_eventually_cobounded_mapsTo πŸ“–mathematicalβ€”Absorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Filter.Eventually
Set.MapsTo
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
Bornology.cobounded
β€”Filter.eventually_congr
Filter.Eventually.mono
Bornology.eventually_ne_cobounded
Set.preimage_smul_invβ‚€
absorbs_inter πŸ“–mathematicalβ€”Absorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set
Set.instInter
β€”β€”
absorbs_neg_neg πŸ“–mathematicalβ€”Absorbs
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Set
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Set.smul_set_neg
absorbs_union πŸ“–mathematicalβ€”Absorbs
Set
Set.instUnion
β€”β€”
absorbs_zero_iff πŸ“–mathematicalβ€”Absorbs
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
Set
Set.zero
Set.instMembership
β€”smul_zero
eventually_cobounded_mapsTo πŸ“–mathematicalAbsorbs
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Filter.Eventually
Set.MapsTo
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
Bornology.cobounded
β€”absorbs_iff_eventually_cobounded_mapsTo

---

← Back to Index