Basic
π Source: Mathlib/Topology/Bornology/Basic.lean
Statistics
Bornology
Definitions
Theorems
Bornology.IsBounded
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
all π | mathematical | β | Bornology.IsBounded | β | subsetBoundedSpace.bounded_univSet.subset_univ |
compl π | mathematical | Bornology.IsBounded | Bornology.IsCoboundedCompl.complSetSet.instCompl | β | Bornology.isCobounded_compl_iff |
insert π | mathematical | Bornology.IsBounded | SetSet.instInsert | β | unionBornology.isBounded_singleton |
of_compl π | mathematical | Bornology.IsBoundedCompl.complSetSet.instCompl | Bornology.IsCobounded | β | Bornology.isBounded_compl_iff |
subset π | β | Bornology.IsBoundedSetSet.instHasSubset | β | β | Bornology.IsCobounded.supersetSet.compl_subset_compl |
union π | mathematical | Bornology.IsBounded | SetSet.instUnion | β | Bornology.isBounded_union |
Bornology.IsCobounded
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
all π | mathematical | β | Bornology.IsCobounded | β | Bornology.IsBounded.allcompl_compl |
compl π | mathematical | Bornology.IsCobounded | Bornology.IsBoundedCompl.complSetSet.instCompl | β | Bornology.isBounded_compl_iff |
inter π | mathematical | Bornology.IsCobounded | SetSet.instInter | β | Bornology.isCobounded_inter |
of_compl π | mathematical | Bornology.IsCoboundedCompl.complSetSet.instCompl | Bornology.IsBounded | β | Bornology.isCobounded_compl_iff |
superset π | β | Bornology.IsCoboundedSetSet.instHasSubset | β | β | Filter.mem_of_superset |
BoundedSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
bounded_univ π | mathematical | β | Bornology.IsBoundedSet.univ | β | β |
of_finite π | mathematical | β | BoundedSpace | β | Set.Finite.isBoundedSet.toFiniteSubtype.finite |
Filter.HasBasis
Theorems
Filter.Tendsto
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eventually_ne_cobounded π | mathematical | Filter.TendstoBornology.cobounded | Filter.Eventually | β | eventuallyBornology.eventually_ne_cobounded |
OrderDual
Definitions
| Name | Category | Theorems |
|---|---|---|
instBornology π | CompOp |
Theorems
Set.Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isBounded π | mathematical | β | Bornology.IsBounded | β | Bornology.le_cofinitecompl_mem_cofinite |
(root)
Definitions
---