Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Bornology/Basic.lean

Statistics

MetricCount
DefinitionsIsCobounded, cobounded, cobounded', cofinite, ofBounded, ofBounded', BoundedSpace, instBornology, instBornologyPUnit
9
Theoremsall, compl, insert, of_compl, subset, union, all, compl, inter, of_compl, superset, cobounded_eq_bot, cobounded_eq_bot_iff, comap_cobounded_le_iff, eventually_ne_cobounded, ext, ext_iff, ext_iff', ext_iff_isBounded, isBounded_biUnion, isBounded_biUnion_finset, isBounded_compl_iff, isBounded_def, isBounded_empty, isBounded_iUnion, isBounded_iff_forall_mem, isBounded_insert, isBounded_ofBounded_iff, isBounded_sUnion, isBounded_singleton, isBounded_union, isBounded_univ, isCobounded_biInter, isCobounded_biInter_finset, isCobounded_compl_iff, isCobounded_def, isCobounded_iInter, isCobounded_inter, isCobounded_ofBounded_iff, isCobounded_sInter, isCobounded_univ, le_cofinite, le_cofinite', nonempty_of_not_isBounded, ofBounded'_cobounded, ofBounded_cobounded, sUnion_bounded_univ, bounded_univ, of_finite, disjoint_cobounded_iff, eventually_ne_cobounded, isBounded_preimage_ofDual, isBounded_preimage_toDual, isCobounded_preimage_ofDual, isCobounded_preimage_toDual, isBounded
56
Total65

Bornology

Definitions

NameCategoryTheorems
IsCobounded πŸ“–MathDef
16 mathmath: isCobounded_iInter, isCobounded_inter, isCobounded_biInter_finset, isCobounded_ofBounded_iff, IsCobounded.all, isBounded_compl_iff, IsBounded.compl, IsBounded.of_compl, Metric.isCobounded_iff_closedBall_compl_subset, isCobounded_compl_iff, isCobounded_univ, OrderDual.isCobounded_preimage_ofDual, isCobounded_sInter, isCobounded_def, OrderDual.isCobounded_preimage_toDual, isCobounded_biInter
cobounded πŸ“–CompOp
105 mathmath: Metric.hasBasis_cobounded_compl_closedBall, tendsto_const_sub_cobounded, eventually_ne_cobounded, tendsto_const_add_cobounded, Filter.hasBasis_cobounded_norm', Complex.comap_exp_cobounded, Metric.hasAntitoneBasis_cobounded_compl_ball, tendsto_cobounded_iff_meromorphicOrderAt_neg, Filter.inv_nhdsWithin_ne_zero, AffineSpace.cobounded_eq_iSup_sphere_asymptoticNhds, tendsto_zpow_nhdsNE_zero_cobounded, eventually_cobounded_le_norm, Metric.comap_dist_left_atTop, DilationEquiv.map_cobounded, Filter.map_mul_left_cobounded, comap_norm_atTop', AntilipschitzWith.tendsto_cobounded, Filter.map_mul_right_cobounded, Filter.inv_nhdsNE_zero, RealNormedSpace.cobounded_neBot, Metric.disjoint_cobounded_nhdsSet, ext_iff, Metric.comap_dist_right_atTop, LocallyBoundedMap.comap_cobounded_le', bornology_eq_of_bilipschitz, le_cofinite, tendsto_cobounded_of_meromorphicOrderAt_neg, Complex.tendsto_exp_comap_re_atTop, Metric.disjoint_nhds_cobounded, Filter.inv_coboundedβ‚€, tendsto_sub_const_cobounded, ofBounded'_cobounded, Asymptotics.isLittleO_const_id_cobounded, Complex.map_exp_comap_re_atTop, eventually_cobounded_mapsTo, Filter.tendsto_invβ‚€_cobounded, tendsto_intCast_atBot_sup_atTop_cobounded, Unitization.cobounded_eq_aux, Metric.cobounded_le_cocompact, spectrum.eventually_isUnit_resolvent, Filter.tendsto_inv_cobounded, Metric.tendsto_dist_left_atTop_iff, Metric.tendsto_dist_left_cobounded_atTop, isBounded_def, Filter.HasBasis.cobounded_of_norm', Filter.hasBasis_cobounded_norm, Absorbs.eventually, Metric.tendsto_dist_right_cobounded_atTop, Metric.hasBasis_cobounded_compl_ball, Metric.hasAntitoneBasis_cobounded_compl_closedBall, ext_iff', RCLike.tendsto_ofReal_cobounded_cobounded, LipschitzWith.comap_cobounded_le, cobounded_eq_bot, absorbs_iff_eventually_cobounded_mapsTo, NontriviallyNormedField.cobounded_neBot, eventually_cobounded_le_norm', Filter.tendsto_invβ‚€_nhdsWithin_ne_zero, PseudoMetricSpace.cobounded_sets, comap_norm_atTop, le_cofinite', cobounded_eq_bot_iff, Filter.HasBasis.cobounded_of_norm, Dilation.comap_cobounded, Dilation.tendsto_cobounded, Metric.cobounded_eq_cocompact, Metric.disjoint_cobounded_nhds, LocallyBoundedMapClass.comap_cobounded_le, tendsto_norm_atTop_iff_cobounded', AffineSpace.asymptoticNhds_le_cobounded, Filter.neg_cobounded, tendsto_norm_cobounded_atTop', Filter.tendsto_mul_left_cobounded, tendsto_norm_cobounded_atTop, Real.cobounded_eq, Filter.comap_mul_left_cobounded, spectrum.resolvent_tendsto_cobounded, tendsto_norm_atTop_iff_cobounded, absorbent_iff_inv_smul, tendsto_add_const_cobounded, NormedSpace.cobounded_neBot, Filter.comap_mul_right_cobounded, tendsto_intCast_atTop_cobounded, Filter.tendsto_mul_right_cobounded, Filter.tendsto_invβ‚€_nhdsNE_zero, Filter.HasBasis.disjoint_cobounded_iff, RCLike.tendsto_ofReal_atBot_cobounded, Metric.disjoint_nhdsSet_cobounded, tendsto_pow_cobounded_cobounded, tendsto_algebraMap_cobounded, isCobounded_def, spectrum.resolvent_isBigO_inv, Filter.tendsto_neg_cobounded, ofBounded_cobounded, cobounded_prod, cobounded_pi, tendsto_intCast_atBot_cobounded, algebraMap_cobounded_le_cobounded, comap_cobounded_le_iff, Metric.tendsto_dist_right_atTop_iff, RCLike.tendsto_ofReal_atTop_cobounded, Filter.tendsto_invβ‚€_cobounded', Int.cobounded_eq, Filter.inv_cobounded, tendsto_natCast_atTop_cobounded
cobounded' πŸ“–CompOpβ€”
cofinite πŸ“–CompOpβ€”
ofBounded πŸ“–CompOp
3 mathmath: isCobounded_ofBounded_iff, ofBounded_cobounded, isBounded_ofBounded_iff
ofBounded' πŸ“–CompOp
1 mathmath: ofBounded'_cobounded

Theorems

NameKindAssumesProvesValidatesDepends On
cobounded_eq_bot πŸ“–mathematicalβ€”cobounded
Bot.bot
Filter
Filter.instBot
β€”cobounded_eq_bot_iff
cobounded_eq_bot_iff πŸ“–mathematicalβ€”cobounded
Bot.bot
Filter
Filter.instBot
BoundedSpace
β€”isBounded_univ
isBounded_def
Set.compl_univ
Filter.empty_mem_iff_bot
comap_cobounded_le_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
cobounded
IsBounded
Set.image
β€”IsBounded.compl
IsBounded.subset
IsCobounded.compl
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_mono
Set.preimage_compl
Set.subset_compl_comm
Set.image_preimage_subset
Set.compl_subset_comm
Set.subset_preimage_image
eventually_ne_cobounded πŸ“–mathematicalβ€”Filter.Eventually
cobounded
β€”Filter.le_cofinite_iff_eventually_ne
le_cofinite
ext πŸ“–β€”coboundedβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”coboundedβ€”ext
ext_iff' πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
cobounded
β€”ext_iff
Filter.ext_iff
ext_iff_isBounded πŸ“–mathematicalβ€”IsBoundedβ€”ext_iff'
Function.Surjective.forall
compl_surjective
isBounded_biUnion πŸ“–mathematicalβ€”IsBounded
Set.iUnion
Set
Set.instMembership
β€”Set.compl_iUnion
isCobounded_biInter
isBounded_biUnion_finset πŸ“–mathematicalβ€”IsBounded
Set.iUnion
Finset
Finset.instMembership
β€”isBounded_biUnion
Finset.finite_toSet
isBounded_compl_iff πŸ“–mathematicalβ€”IsBounded
Compl.compl
Set
Set.instCompl
IsCobounded
β€”isBounded_def
isCobounded_def
compl_compl
isBounded_def πŸ“–mathematicalβ€”IsBounded
Set
Filter
Filter.instMembership
cobounded
Compl.compl
Set.instCompl
β€”β€”
isBounded_empty πŸ“–mathematicalβ€”IsBounded
Set
Set.instEmptyCollection
β€”isBounded_def
Set.compl_empty
Filter.univ_mem
isBounded_iUnion πŸ“–mathematicalβ€”IsBounded
Set.iUnion
β€”Set.sUnion_range
isBounded_sUnion
Set.finite_range
Set.forall_mem_range
isBounded_iff_forall_mem πŸ“–mathematicalβ€”IsBoundedβ€”Set.eq_empty_or_nonempty
isBounded_empty
isBounded_insert πŸ“–mathematicalβ€”IsBounded
Set
Set.instInsert
β€”IsBounded.subset
Set.subset_insert
IsBounded.insert
isBounded_ofBounded_iff πŸ“–mathematicalSet
Set.instMembership
Set.instEmptyCollection
Set.instUnion
Set.instSingletonSet
IsBounded
ofBounded
β€”isBounded_def
ofBounded_cobounded
isBounded_sUnion πŸ“–mathematicalβ€”IsBounded
Set.sUnion
β€”Set.sUnion_eq_biUnion
isBounded_biUnion
isBounded_singleton πŸ“–mathematicalβ€”IsBounded
Set
Set.instSingletonSet
β€”isBounded_def
le_cofinite
Set.Finite.compl_mem_cofinite
Set.finite_singleton
isBounded_union πŸ“–mathematicalβ€”IsBounded
Set
Set.instUnion
β€”Set.compl_union
isBounded_univ πŸ“–mathematicalβ€”IsBounded
Set.univ
BoundedSpace
β€”BoundedSpace.bounded_univ
isCobounded_biInter πŸ“–mathematicalβ€”IsCobounded
Set.iInter
Set
Set.instMembership
β€”Filter.biInter_mem
isCobounded_biInter_finset πŸ“–mathematicalβ€”IsCobounded
Set.iInter
Finset
Finset.instMembership
β€”Filter.biInter_finset_mem
isCobounded_compl_iff πŸ“–mathematicalβ€”IsCobounded
Compl.compl
Set
Set.instCompl
IsBounded
β€”β€”
isCobounded_def πŸ“–mathematicalβ€”IsCobounded
Set
Filter
Filter.instMembership
cobounded
β€”β€”
isCobounded_iInter πŸ“–mathematicalβ€”IsCobounded
Set.iInter
β€”Filter.iInter_mem
isCobounded_inter πŸ“–mathematicalβ€”IsCobounded
Set
Set.instInter
β€”Filter.inter_mem_iff
isCobounded_ofBounded_iff πŸ“–mathematicalSet
Set.instMembership
Set.instEmptyCollection
Set.instUnion
Set.instSingletonSet
IsCobounded
ofBounded
Compl.compl
Set.instCompl
β€”β€”
isCobounded_sInter πŸ“–mathematicalβ€”IsCobounded
Set.sInter
β€”Filter.sInter_mem
isCobounded_univ πŸ“–mathematicalβ€”IsCobounded
Set.univ
β€”Filter.univ_mem
le_cofinite πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
cobounded
Filter.cofinite
β€”β€”
le_cofinite' πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
cobounded
Filter.cofinite
β€”le_cofinite
nonempty_of_not_isBounded πŸ“–mathematicalIsBoundedSet.Nonemptyβ€”Set.nonempty_iff_ne_empty
isBounded_empty
ofBounded'_cobounded πŸ“–mathematicalSet
Set.instMembership
Set.instEmptyCollection
Set.instUnion
Set.sUnion
Set.univ
cobounded
ofBounded'
β€”β€”
ofBounded_cobounded πŸ“–mathematicalSet
Set.instMembership
Set.instEmptyCollection
Set.instUnion
Set.instSingletonSet
cobounded
ofBounded
β€”β€”
sUnion_bounded_univ πŸ“–mathematicalβ€”Set.sUnion
setOf
Set
IsBounded
Set.univ
β€”Set.sUnion_eq_univ_iff
isBounded_singleton
Set.mem_singleton

Bornology.IsBounded

Theorems

NameKindAssumesProvesValidatesDepends On
all πŸ“–mathematicalβ€”Bornology.IsBoundedβ€”subset
BoundedSpace.bounded_univ
Set.subset_univ
compl πŸ“–mathematicalBornology.IsBoundedBornology.IsCobounded
Compl.compl
Set
Set.instCompl
β€”Bornology.isCobounded_compl_iff
insert πŸ“–mathematicalBornology.IsBoundedSet
Set.instInsert
β€”union
Bornology.isBounded_singleton
of_compl πŸ“–mathematicalBornology.IsBounded
Compl.compl
Set
Set.instCompl
Bornology.IsCoboundedβ€”Bornology.isBounded_compl_iff
subset πŸ“–β€”Bornology.IsBounded
Set
Set.instHasSubset
β€”β€”Bornology.IsCobounded.superset
Set.compl_subset_compl
union πŸ“–mathematicalBornology.IsBoundedSet
Set.instUnion
β€”Bornology.isBounded_union

Bornology.IsCobounded

Theorems

NameKindAssumesProvesValidatesDepends On
all πŸ“–mathematicalβ€”Bornology.IsCoboundedβ€”Bornology.IsBounded.all
compl_compl
compl πŸ“–mathematicalBornology.IsCoboundedBornology.IsBounded
Compl.compl
Set
Set.instCompl
β€”Bornology.isBounded_compl_iff
inter πŸ“–mathematicalBornology.IsCoboundedSet
Set.instInter
β€”Bornology.isCobounded_inter
of_compl πŸ“–mathematicalBornology.IsCobounded
Compl.compl
Set
Set.instCompl
Bornology.IsBoundedβ€”Bornology.isCobounded_compl_iff
superset πŸ“–β€”Bornology.IsCobounded
Set
Set.instHasSubset
β€”β€”Filter.mem_of_superset

BoundedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
bounded_univ πŸ“–mathematicalβ€”Bornology.IsBounded
Set.univ
β€”β€”
of_finite πŸ“–mathematicalβ€”BoundedSpaceβ€”Set.Finite.isBounded
Set.toFinite
Subtype.finite

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_cobounded_iff πŸ“–mathematicalFilter.HasBasisDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Bornology.cobounded
Bornology.IsBounded
β€”disjoint_iff_left

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_ne_cobounded πŸ“–mathematicalFilter.Tendsto
Bornology.cobounded
Filter.Eventuallyβ€”eventually
Bornology.eventually_ne_cobounded

OrderDual

Definitions

NameCategoryTheorems
instBornology πŸ“–CompOp
4 mathmath: isBounded_preimage_toDual, isBounded_preimage_ofDual, isCobounded_preimage_ofDual, isCobounded_preimage_toDual

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded_preimage_ofDual πŸ“–mathematicalβ€”Bornology.IsBounded
OrderDual
instBornology
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
β€”β€”
isBounded_preimage_toDual πŸ“–mathematicalβ€”Bornology.IsBounded
Set.preimage
OrderDual
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instBornology
β€”β€”
isCobounded_preimage_ofDual πŸ“–mathematicalβ€”Bornology.IsCobounded
OrderDual
instBornology
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
β€”β€”
isCobounded_preimage_toDual πŸ“–mathematicalβ€”Bornology.IsCobounded
Set.preimage
OrderDual
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instBornology
β€”β€”

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded πŸ“–mathematicalβ€”Bornology.IsBoundedβ€”Bornology.le_cofinite
compl_mem_cofinite

(root)

Definitions

NameCategoryTheorems
BoundedSpace πŸ“–CompData
21 mathmath: BoundedSpace.of_finite, UniformOnFun.instBoundedSpace, Bornology.IsBounded.boundedSpace_subtype, Tactic.ComputeAsymptotics.Seq.instBoundedSpaceSeq, Bornology.IsBounded.boundedSpace_val, Metric.boundedSpace_iff, boundedSpace_subtype_iff, PiNat.boundedSpace, instBoundedSpaceProd, UniformFun.instBoundedSpace, boundedSpace_val_set_iff, Bornology.cobounded_eq_bot_iff, Bornology.isBounded_univ, Tactic.ComputeAsymptotics.Seq.instBoundedSpaceStream', Metric.boundedSpace_iff_nndist, instBoundedSpaceAdditive, instBoundedSpaceOrderDual, instBoundedSpaceSubtype, instBoundedSpaceMultiplicative, boundedSpace_induced_iff, Metric.boundedSpace_iff_edist
instBornologyPUnit πŸ“–CompOpβ€”

---

← Back to Index