Documentation Verification Report

Constructions

πŸ“ Source: Mathlib/Topology/Bornology/Constructions.lean

Statistics

MetricCount
Definitionsinduced, instBornology, instBornology, instBornologyAdditive, instBornologyMultiplicative, instBornologyOrderDual, instBornologySubtype
7
TheoremsboundedSpace_subtype, boundedSpace_val, fst_of_prod, image_eval, image_fst, image_snd, pi, prod, snd_of_prod, cobounded_pi, cobounded_prod, forall_isBounded_image_eval_iff, isBounded_image_fst_and_snd, isBounded_image_subtype_val, isBounded_induced, isBounded_pi, isBounded_pi_of_nonempty, isBounded_prod, isBounded_prod_of_nonempty, isBounded_prod_self, boundedSpace_induced_iff, boundedSpace_subtype_iff, boundedSpace_val_set_iff, instBoundedSpaceAdditive, instBoundedSpaceForall, instBoundedSpaceMultiplicative, instBoundedSpaceOrderDual, instBoundedSpaceProd, instBoundedSpaceSubtype
29
Total36

Bornology

Definitions

NameCategoryTheorems
induced πŸ“–CompOp
5 mathmath: bornology_eq_of_bilipschitz, isBounded_induced, Unitization.cobounded_eq_aux, isBounded_iff_of_bilipschitz, boundedSpace_induced_iff

Theorems

NameKindAssumesProvesValidatesDepends On
cobounded_pi πŸ“–mathematicalβ€”cobounded
Pi.instBornology
Filter.coprodα΅’
β€”β€”
cobounded_prod πŸ“–mathematicalβ€”cobounded
Prod.instBornology
Filter.coprod
β€”β€”
forall_isBounded_image_eval_iff πŸ“–mathematicalβ€”IsBounded
Set.image
Function.eval
Pi.instBornology
β€”Filter.compl_mem_coprodα΅’
isBounded_image_fst_and_snd πŸ“–mathematicalβ€”IsBounded
Set.image
Prod.instBornology
β€”Filter.compl_mem_coprod
isBounded_image_subtype_val πŸ“–mathematicalβ€”IsBounded
Set.image
instBornologySubtype
β€”isBounded_induced
isBounded_induced πŸ“–mathematicalβ€”IsBounded
induced
Set.image
β€”Filter.compl_mem_comap
isBounded_pi πŸ“–mathematicalβ€”IsBounded
Pi.instBornology
Set.pi
Set.univ
Set
Set.instEmptyCollection
β€”Set.univ_pi_eq_empty_iff
isBounded_pi_of_nonempty
isBounded_pi_of_nonempty πŸ“–mathematicalSet.Nonempty
Set.pi
Set.univ
IsBounded
Pi.instBornology
β€”forall_isBounded_image_eval_iff
Set.eval_image_univ_pi
IsBounded.pi
isBounded_prod πŸ“–mathematicalβ€”IsBounded
Prod.instBornology
SProd.sprod
Set
Set.instSProd
Set.instEmptyCollection
β€”Set.eq_empty_or_nonempty
Set.empty_prod
Set.prod_empty
isBounded_prod_of_nonempty
Set.Nonempty.prod
Set.Nonempty.ne_empty
isBounded_prod_of_nonempty πŸ“–mathematicalSet.Nonempty
SProd.sprod
Set
Set.instSProd
IsBounded
Prod.instBornology
β€”IsBounded.fst_of_prod
Set.Nonempty.snd
IsBounded.snd_of_prod
Set.Nonempty.fst
IsBounded.prod
isBounded_prod_self πŸ“–mathematicalβ€”IsBounded
Prod.instBornology
SProd.sprod
Set
Set.instSProd
β€”Set.eq_empty_or_nonempty
Set.prod_empty
isBounded_prod_of_nonempty
Set.Nonempty.prod

Bornology.IsBounded

Theorems

NameKindAssumesProvesValidatesDepends On
boundedSpace_subtype πŸ“–mathematicalBornology.IsBounded
setOf
BoundedSpace
instBornologySubtype
β€”boundedSpace_subtype_iff
boundedSpace_val πŸ“–mathematicalBornology.IsBoundedBoundedSpace
Set.Elem
instBornologySubtype
Set
Set.instMembership
β€”boundedSpace_val_set_iff
fst_of_prod πŸ“–β€”Bornology.IsBounded
Prod.instBornology
SProd.sprod
Set
Set.instSProd
Set.Nonempty
β€”β€”image_fst
Set.fst_image_prod
image_eval πŸ“–mathematicalBornology.IsBounded
Pi.instBornology
Set.image
Function.eval
β€”Bornology.forall_isBounded_image_eval_iff
image_fst πŸ“–mathematicalBornology.IsBounded
Prod.instBornology
Set.imageβ€”Bornology.isBounded_image_fst_and_snd
image_snd πŸ“–mathematicalBornology.IsBounded
Prod.instBornology
Set.imageβ€”Bornology.isBounded_image_fst_and_snd
pi πŸ“–mathematicalBornology.IsBoundedPi.instBornology
Set.pi
Set.univ
β€”Bornology.forall_isBounded_image_eval_iff
subset
Set.eval_image_univ_pi_subset
prod πŸ“–mathematicalBornology.IsBoundedProd.instBornology
SProd.sprod
Set
Set.instSProd
β€”Bornology.isBounded_image_fst_and_snd
subset
Set.fst_image_prod_subset
Set.snd_image_prod_subset
snd_of_prod πŸ“–β€”Bornology.IsBounded
Prod.instBornology
SProd.sprod
Set
Set.instSProd
Set.Nonempty
β€”β€”image_snd
Set.snd_image_prod

Pi

Definitions

NameCategoryTheorems
instBornology πŸ“–CompOp
12 mathmath: BoxIntegral.Box.isBounded, instIsOrderBornology, Bornology.isBounded_pi_of_nonempty, Bornology.IsBounded.pi, bounded_stdSimplex, Bornology.forall_isBounded_image_eval_iff, BoxIntegral.Box.isBounded_Icc, Bornology.isBounded_pi, NumberField.mixedEmbedding.fundamentalCone.isBounded_normLeOne, NumberField.mixedEmbedding.convexBodySum_isBounded, instBoundedSpaceForall, Bornology.cobounded_pi

Prod

Definitions

NameCategoryTheorems
instBornology πŸ“–CompOp
11 mathmath: Bornology.IsBounded.prod, Unitization.cobounded_eq_aux, instIsOrderBornology, instBoundedSpaceProd, Bornology.isBounded_image_fst_and_snd, Bornology.isBounded_prod, Bornology.isBounded_prod_self, NumberField.mixedEmbedding.fundamentalCone.isBounded_normLeOne, NumberField.mixedEmbedding.convexBodySum_isBounded, Bornology.isBounded_prod_of_nonempty, Bornology.cobounded_prod

(root)

Definitions

NameCategoryTheorems
instBornologyAdditive πŸ“–CompOp
1 mathmath: instBoundedSpaceAdditive
instBornologyMultiplicative πŸ“–CompOp
1 mathmath: instBoundedSpaceMultiplicative
instBornologyOrderDual πŸ“–CompOp
2 mathmath: OrderDual.instIsOrderBornology, instBoundedSpaceOrderDual
instBornologySubtype πŸ“–CompOp
6 mathmath: Bornology.IsBounded.boundedSpace_subtype, Bornology.IsBounded.boundedSpace_val, boundedSpace_subtype_iff, Bornology.isBounded_image_subtype_val, boundedSpace_val_set_iff, instBoundedSpaceSubtype

Theorems

NameKindAssumesProvesValidatesDepends On
boundedSpace_induced_iff πŸ“–mathematicalβ€”BoundedSpace
Bornology.induced
Bornology.IsBounded
Set.range
β€”Bornology.isBounded_univ
Bornology.isBounded_induced
Set.image_univ
boundedSpace_subtype_iff πŸ“–mathematicalβ€”BoundedSpace
instBornologySubtype
Bornology.IsBounded
setOf
β€”boundedSpace_induced_iff
Subtype.range_coe_subtype
boundedSpace_val_set_iff πŸ“–mathematicalβ€”BoundedSpace
Set.Elem
instBornologySubtype
Set
Set.instMembership
Bornology.IsBounded
β€”boundedSpace_subtype_iff
instBoundedSpaceAdditive πŸ“–mathematicalβ€”BoundedSpace
Additive
instBornologyAdditive
β€”β€”
instBoundedSpaceForall πŸ“–mathematicalBoundedSpacePi.instBornologyβ€”Bornology.cobounded_eq_bot
Filter.coprodα΅’_bot
instBoundedSpaceMultiplicative πŸ“–mathematicalβ€”BoundedSpace
Multiplicative
instBornologyMultiplicative
β€”β€”
instBoundedSpaceOrderDual πŸ“–mathematicalβ€”BoundedSpace
OrderDual
instBornologyOrderDual
β€”β€”
instBoundedSpaceProd πŸ“–mathematicalβ€”BoundedSpace
Prod.instBornology
β€”Bornology.cobounded_eq_bot
Filter.coprod_bot
Filter.comap_bot
instBoundedSpaceSubtype πŸ“–mathematicalβ€”BoundedSpace
instBornologySubtype
β€”Bornology.IsBounded.boundedSpace_subtype
Bornology.IsBounded.all

---

← Back to Index