Documentation Verification Report

SigmaComparison

📁 Source: Mathlib/Topology/Category/CompHausLike/SigmaComparison.lean

Statistics

MetricCount
DefinitionssigmaComparison
1
TheoremsinstHasPropSigma, isIsoSigmaComparison, sigmaComparison_eq_comp_isos
3
Total4

CompHausLike

Definitions

NameCategoryTheorems
sigmaComparison 📖CompOp
3 mathmath: sigmaComparison_eq_comp_isos, isIsoSigmaComparison, LocallyConstant.sigmaComparison_comp_sigmaIso

Theorems

NameKindAssumesProvesValidatesDepends On
instHasPropSigma 📖mathematicalCompactSpace
T2Space
HasProp
instTopologicalSpaceSigmaHasExplicitFiniteCoproducts.hasProp
isIsoSigmaComparison 📖mathematicalCompactSpace
T2Space
HasProp
CategoryTheory.IsIso
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CompHausLike
CategoryTheory.Category.opposite
category
Opposite.op
of
instTopologicalSpaceSigma
instCompactSpaceSigmaOfFinite
Sigma.t2Space
instHasPropSigma
sigmaComparison
instCompactSpaceSigmaOfFinite
Sigma.t2Space
instHasPropSigma
HasExplicitFiniteCoproducts.hasProp
CategoryTheory.Limits.instHasProductOppositeOp
instHasCoproduct
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
sigmaComparison_eq_comp_isos
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
sigmaComparison_eq_comp_isos 📖mathematicalCompactSpace
T2Space
HasProp
sigmaComparison
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CompHausLike
CategoryTheory.Category.opposite
category
Opposite.op
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
of
finiteCoproduct.cofan
HasExplicitFiniteCoproducts.hasProp
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.piObj
CategoryTheory.Limits.instHasProductOppositeOp
instHasCoproduct
CategoryTheory.Limits.Pi.π
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapIso
CategoryTheory.Limits.opCoproductIsoProduct'
finiteCoproduct.isColimit
CategoryTheory.Limits.productIsProduct
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesProduct.iso
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.Types.productIso
CategoryTheory.types_ext
instCompactSpaceSigmaOfFinite
Sigma.t2Space
instHasPropSigma
HasExplicitFiniteCoproducts.hasProp
CategoryTheory.Limits.instHasProductOppositeOp
instHasCoproduct
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply
CategoryTheory.Limits.piComparison_comp_π
CategoryTheory.FunctorToTypes.map_comp_apply
continuous_sigmaMk
CategoryTheory.Limits.opCoproductIsoProduct_inv_comp_ι
CategoryTheory.Category.assoc
CategoryTheory.Limits.opCoproductIsoProduct'_comp_self
CategoryTheory.Limits.IsColimit.fac

---

← Back to Index