Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Category/CompHaus/Basic.lean

Statistics

MetricCount
DefinitionsCompHaus, instCoeSortType, instInhabited, limitCone, limitConeIsLimit, of, compHausLikeToCompHaus, compHausToTop, createsLimits, reflective, stoneCechEquivalence, stoneCechObj, topToCompHaus
13
Theoremsepi_iff_surjective, hasColimits, hasLimits, instCompactSpaceCarrierToTopTrue, instHasPropTrue, instT2SpaceCarrierToTopTrue, stoneCechObj_toTop_carrier, topToCompHaus_obj
8
Total21

CompHaus

Definitions

NameCategoryTheorems
instCoeSortType πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
limitCone πŸ“–CompOp
1 mathmath: LightProfinite.instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus
limitConeIsLimit πŸ“–CompOpβ€”
of πŸ“–CompOp
8 mathmath: condensedSetToTopCat_obj_carrier, CondensedSet.topCatAdjunctionUnit_val_app_apply, CondensedSet.continuous_coinducingCoprod, CondensedSet.topCatAdjunctionUnit_val_app, projective_ultrafilter, Condensed.underlying_obj, CondensedSet.toTopCatMap_hom_apply, Condensed.underlying_map

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_surjective πŸ“–mathematicalβ€”CategoryTheory.Epi
CompHaus
CompHausLike.category
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
TopCat.carrier
CompHausLike.toTop
TopCat.str
ContinuousMap.instFunLike
CompHausLike.concreteCategory
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
IsCompact.isClosed
instT2SpaceCarrierToTopTrue
isCompact_range
instCompactSpaceCarrierToTopTrue
ContinuousMap.continuous
isClosed_singleton
T2Space.t1Space
Set.disjoint_singleton_right
exists_continuous_zero_one_of_isClosed
NormalSpace.of_regularSpace_lindelofSpace
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
T2Space.r1Space
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
Homeomorph.compactSpace
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Homeomorph.t2Space
instT2SpaceSubtype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CompHausLike.is_compact
CompHausLike.is_hausdorff
instHasPropTrue
Continuous.comp
continuous_uliftUp
Set.left_mem_Icc
zero_le_one
Real.instZeroLEOneClass
continuous_const
CategoryTheory.cancel_epi
CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext
ULift.ext
CategoryTheory.comp_apply
Set.mem_range_self
zero_ne_one
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Set.mem_singleton
CategoryTheory.epi_iff_surjective
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
CategoryTheory.instFaithfulForget
hasColimits πŸ“–mathematicalβ€”CategoryTheory.Limits.HasColimits
CompHaus
CompHausLike.category
β€”CategoryTheory.hasColimits_of_reflective
TopCat.topCat_hasColimits
hasLimits πŸ“–mathematicalβ€”CategoryTheory.Limits.HasLimits
CompHaus
CompHausLike.category
β€”CategoryTheory.hasLimits_of_hasLimits_createsLimits
TopCat.topCat_hasLimits
instCompactSpaceCarrierToTopTrue πŸ“–mathematicalβ€”CompactSpace
TopCat.carrier
CompHausLike.toTop
TopCat.str
β€”CompHausLike.is_compact
instHasPropTrue πŸ“–mathematicalβ€”CompHausLike.HasPropβ€”β€”
instT2SpaceCarrierToTopTrue πŸ“–mathematicalβ€”T2Space
TopCat.carrier
CompHausLike.toTop
TopCat.str
β€”CompHausLike.is_hausdorff

(root)

Definitions

NameCategoryTheorems
CompHaus πŸ“–CompOp
68 mathmath: condensedSetToTopCat_obj_carrier, Condensed.hom_ext_iff, CondensedMod.isDiscrete_tfae, CondensedSet.hom_naturality_apply, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, Condensed.discrete_map, Stonean.instEffectivelyEnoughCompHausToCompHaus, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, CompHaus.hasColimits, compactumToCompHaus.full, instPreservesEpimorphismsCompHausCondensedSetCompHausToCondensed, CompHaus.instEnoughProjectives, instFullCompHausCondensedTypeCompHausToCondensed', compactumToCompHaus.essSurj, Condensed.instPreservesFiniteProductsOppositeCompHausVal, CondensedMod.isDiscrete_iff_isDiscrete_forget, compactumToCompHaus.isEquivalence, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, instFullCompHausCondensedSetCompHausToCondensed, CompHaus.lift_lifts, CondensedMod.epi_iff_surjective_on_stonean, CondensedSet.epi_iff_surjective_on_stonean, CondensedSet.topCatAdjunctionUnit_val_app_apply, compactumToCompHaus.faithful, Condensed.comp_val, Profinite.instReflectsEffectiveEpisCompHausProfiniteToCompHaus, CondensedMod.hom_naturality_apply, instTotallyDisconnectedSpaceCarrierToTopTrueObjProfiniteCompHausProfiniteToCompHaus, Condensed.epi_iff_locallySurjective_on_compHaus, CompHaus.toProfinite_obj', Profinite.instPreservesEffectiveEpisCompHausProfiniteToCompHaus, CondensedSet.continuous_coinducingCoprod, CompHausOpToFrame.faithful, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, CondensedSet.topCatAdjunctionUnit_val_app, CompHaus.instPreregular, CompHaus.lift_lifts_assoc, CondensedSet.isDiscrete_tfae, LightProfinite.instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus, CompHaus.effectiveEpi_tfae, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete, instFaithfulCompHausCondensedTypeCompHausToCondensed', CompHaus.presentation.epi_Ο€, CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, Profinite.instEffectivelyEnoughCompHausProfiniteToCompHaus, CompHaus.hasLimits, CondensedMod.epi_iff_locallySurjective_on_compHaus, CompHaus.projective_ultrafilter, Stonean.instReflectsEffectiveEpisCompHausToCompHaus, CompHaus.epi_iff_surjective, instFaithfulCompHausCondensedSetCompHausToCondensed, Stonean.instProjectiveCompHausCompHaus, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, CompHaus.Gleason, Condensed.underlying_obj, CondensedSet.toTopCatMap_hom_apply, Condensed.underlying_map, CompHaus.effectiveEpiFamily_tfae, CondensedSet.epi_iff_locallySurjective_on_compHaus, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, Condensed.id_val, Stonean.instPreservesEffectiveEpisCompHausToCompHaus, Condensed.instAB4CondensedMod, Condensed.equalizerCondition, Condensed.discrete_obj, CompHausToLocale.faithful, topToCompHaus_obj
compHausLikeToCompHaus πŸ“–CompOpβ€”
compHausToTop πŸ“–CompOp
2 mathmath: CompHausOpToFrame.faithful, CompHausToLocale.faithful
stoneCechEquivalence πŸ“–CompOpβ€”
stoneCechObj πŸ“–CompOp
1 mathmath: stoneCechObj_toTop_carrier
topToCompHaus πŸ“–CompOp
1 mathmath: topToCompHaus_obj

Theorems

NameKindAssumesProvesValidatesDepends On
stoneCechObj_toTop_carrier πŸ“–mathematicalβ€”TopCat.carrier
CompHausLike.toTop
stoneCechObj
StoneCech
TopCat.str
β€”β€”
topToCompHaus_obj πŸ“–mathematicalβ€”TopCat.carrier
CompHausLike.toTop
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
CompHaus
CompHausLike.category
topToCompHaus
StoneCech
TopCat.str
β€”β€”

compHausToTop

Definitions

NameCategoryTheorems
createsLimits πŸ“–CompOpβ€”
reflective πŸ“–CompOpβ€”

---

← Back to Index