Documentation Verification Report

Compactum

📁 Source: Mathlib/Topology/Category/Compactum.lean

Statistics

MetricCount
DefinitionsforgetCreatesLimits, Compactum, adj, forget, free, homOfContinuous, incl, instCoeSortType, instConcreteCategoryHomA, instCreatesLimitsForget, instFunLikeHomA, instTopologicalSpaceA, join, ofTopologicalSpace, str, forgetCreatesLimits, compactumToCompHaus, isoOfTopologicalSpace, compactumToCompHausCompForget, instCategoryCompactum, instInhabitedCompactum
21
Theoremscl_eq_closure, continuous_of_hom, instCompactSpaceA, instFaithfulForget, instHasLimits, instT2SpaceA, isClosed_cl, isClosed_iff, join_distrib, le_nhds_of_str_eq, lim_eq_str, str_eq_of_le_nhds, str_hom_commute, str_incl, essSurj, faithful, full, isEquivalence
18
Total39

CompHaus

Definitions

NameCategoryTheorems
forgetCreatesLimits 📖CompOp

Compactum

Definitions

NameCategoryTheorems
adj 📖CompOp
forget 📖CompOp
1 mathmath: instFaithfulForget
free 📖CompOp
homOfContinuous 📖CompOp
incl 📖CompOp
1 mathmath: str_incl
instCoeSortType 📖CompOp
instConcreteCategoryHomA 📖CompOp
2 mathmath: continuous_of_hom, str_hom_commute
instCreatesLimitsForget 📖CompOp
instFunLikeHomA 📖CompOp
2 mathmath: continuous_of_hom, str_hom_commute
instTopologicalSpaceA 📖CompOp
8 mathmath: instT2SpaceA, cl_eq_closure, instCompactSpaceA, le_nhds_of_str_eq, lim_eq_str, continuous_of_hom, isClosed_iff, isClosed_cl
join 📖CompOp
1 mathmath: join_distrib
ofTopologicalSpace 📖CompOp
str 📖CompOp
6 mathmath: lim_eq_str, str_incl, str_hom_commute, str_eq_of_le_nhds, isClosed_iff, join_distrib

Theorems

NameKindAssumesProvesValidatesDepends On
cl_eq_closure 📖mathematicalclosure
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
instTopologicalSpaceA
Ultrafilter.lawfulMonad
Set.ext
mem_closure_iff_ultrafilter
le_nhds_of_str_eq
str_eq_of_le_nhds
continuous_of_hom 📖mathematicalContinuous
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
instTopologicalSpaceA
DFunLike.coe
instFunLikeHomA
CategoryTheory.ConcreteCategory.hom
Compactum
instCategoryCompactum
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instConcreteCategoryHomA
Ultrafilter.lawfulMonad
continuous_iff_ultrafilter
Filter.Tendsto.eq_1
Ultrafilter.coe_map
le_nhds_of_str_eq
str_hom_commute
str_eq_of_le_nhds
instCompactSpaceA 📖mathematicalCompactSpace
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
instTopologicalSpaceA
Ultrafilter.lawfulMonad
isCompact_iff_ultrafilter_le_nhds
le_nhds_iff
instFaithfulForget 📖mathematicalCategoryTheory.Functor.Faithful
Compactum
instCategoryCompactum
CategoryTheory.types
forget
Ultrafilter.lawfulMonad
CategoryTheory.Monad.forget_faithful
instHasLimits 📖mathematicalCategoryTheory.Limits.HasLimits
Compactum
instCategoryCompactum
CategoryTheory.hasLimits_of_hasLimits_createsLimits
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
instT2SpaceA 📖mathematicalT2Space
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
instTopologicalSpaceA
Ultrafilter.lawfulMonad
t2_iff_ultrafilter
str_eq_of_le_nhds
isClosed_cl 📖mathematicalIsClosed
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
instTopologicalSpaceA
Ultrafilter.lawfulMonad
isClosed_iff
isClosed_iff 📖mathematicalIsClosed
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
instTopologicalSpaceA
Set
Set.instMembership
str
Ultrafilter.lawfulMonad
isOpen_compl_iff
Ultrafilter.compl_mem_iff_notMem
Ultrafilter.mem_or_compl_mem
join_distrib 📖mathematicalstr
join
Ultrafilter.map
Ultrafilter
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter.monad
Ultrafilter.lawfulMonad
Ultrafilter.lawfulMonad
CategoryTheory.Monad.Algebra.assoc
le_nhds_of_str_eq 📖mathematicalstrFilter
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
nhds
instTopologicalSpaceA
Ultrafilter.lawfulMonad
le_nhds_iff
lim_eq_str 📖mathematicalUltrafilter.lim
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
instTopologicalSpaceA
str
Ultrafilter.lawfulMonad
Ultrafilter.lim_eq_iff_le_nhds
instT2SpaceA
instCompactSpaceA
le_nhds_iff
str_eq_of_le_nhds 📖mathematicalFilter
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
nhds
instTopologicalSpaceA
strUltrafilter.lawfulMonad
Ultrafilter.compl_mem_iff_notMem
Ultrafilter.mem_coe
le_nhds_iff
IsClosed.isOpen_compl
isClosed_cl
Filter.mem_of_superset
Filter.inter_mem
FiniteInter.finiteInterClosure_insert
Filter.univ_sets
Set.ext
FiniteInter.finiteInter_mem
FiniteInter.finiteInterClosure_finiteInter
Ultrafilter.exists_ultrafilter_of_finite_inter_nonempty
Ultrafilter.coe_le_coe
join_distrib
str_incl
str_hom_commute 📖mathematicalDFunLike.coe
CategoryTheory.Monad.Algebra.A
CategoryTheory.types
CategoryTheory.ofTypeMonad
Ultrafilter
Ultrafilter.monad
Ultrafilter.lawfulMonad
instFunLikeHomA
CategoryTheory.ConcreteCategory.hom
Compactum
instCategoryCompactum
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instConcreteCategoryHomA
str
Ultrafilter.map
Ultrafilter.lawfulMonad
CategoryTheory.Monad.Algebra.Hom.h
str_incl 📖mathematicalstr
incl
Ultrafilter.lawfulMonad
CategoryTheory.Monad.Algebra.unit

Profinite

Definitions

NameCategoryTheorems
forgetCreatesLimits 📖CompOp

(root)

Definitions

NameCategoryTheorems
Compactum 📖CompOp
8 mathmath: compactumToCompHaus.full, compactumToCompHaus.essSurj, compactumToCompHaus.isEquivalence, compactumToCompHaus.faithful, Compactum.instHasLimits, Compactum.continuous_of_hom, Compactum.str_hom_commute, Compactum.instFaithfulForget
compactumToCompHaus 📖CompOp
4 mathmath: compactumToCompHaus.full, compactumToCompHaus.essSurj, compactumToCompHaus.isEquivalence, compactumToCompHaus.faithful
compactumToCompHausCompForget 📖CompOp
instCategoryCompactum 📖CompOp
8 mathmath: compactumToCompHaus.full, compactumToCompHaus.essSurj, compactumToCompHaus.isEquivalence, compactumToCompHaus.faithful, Compactum.instHasLimits, Compactum.continuous_of_hom, Compactum.str_hom_commute, Compactum.instFaithfulForget
instInhabitedCompactum 📖CompOp

compactumToCompHaus

Definitions

NameCategoryTheorems
isoOfTopologicalSpace 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
essSurj 📖mathematicalCategoryTheory.Functor.EssSurj
Compactum
CompHaus
instCategoryCompactum
CompHausLike.category
compactumToCompHaus
CompHaus.instCompactSpaceCarrierToTopTrue
CompHaus.instT2SpaceCarrierToTopTrue
faithful 📖mathematicalCategoryTheory.Functor.Faithful
Compactum
instCategoryCompactum
CompHaus
CompHausLike.category
compactumToCompHaus
CategoryTheory.Monad.Algebra.Hom.ext
Ultrafilter.lawfulMonad
full 📖mathematicalCategoryTheory.Functor.Full
Compactum
instCategoryCompactum
CompHaus
CompHausLike.category
compactumToCompHaus
ContinuousMap.continuous_toFun
isEquivalence 📖mathematicalCategoryTheory.Functor.IsEquivalence
Compactum
instCategoryCompactum
CompHaus
CompHausLike.category
compactumToCompHaus
faithful
full
essSurj

---

← Back to Index