Documentation Verification Report

AsLimit

📁 Source: Mathlib/Topology/Category/LightProfinite/AsLimit.lean

Statistics

MetricCount
DefinitionsasLimit, asLimitAux, asLimitCone, asLimitConeAux, component, diagram, fintypeDiagram, isoMapCone, lim, proj, transitionMap, transitionMapLE
12
TheoremslightToProfinite_map_proj_eq, proj_comp_transitionMap, proj_comp_transitionMap', proj_comp_transitionMapLE, proj_comp_transitionMapLE', proj_surjective, surjective_transitionMap, surjective_transitionMapLE
8
Total20

LightProfinite

Definitions

NameCategoryTheorems
asLimit 📖CompOp
asLimitAux 📖CompOp
asLimitCone 📖CompOp
3 mathmath: LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, instEpiAppOppositeNatπAsLimitCone
asLimitConeAux 📖CompOp
component 📖CompOp
4 mathmath: proj_comp_transitionMapLE', surjective_transitionMapLE, surjective_transitionMap, proj_comp_transitionMap'
diagram 📖CompOp
8 mathmath: proj_comp_transitionMap, proj_comp_transitionMapLE', lightToProfinite_map_proj_eq, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, proj_surjective, proj_comp_transitionMapLE, instEpiAppOppositeNatπAsLimitCone, proj_comp_transitionMap'
fintypeDiagram 📖CompOp
1 mathmath: LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp
isoMapCone 📖CompOp
lim 📖CompOp
proj 📖CompOp
6 mathmath: proj_comp_transitionMap, proj_comp_transitionMapLE', lightToProfinite_map_proj_eq, proj_surjective, proj_comp_transitionMapLE, proj_comp_transitionMap'
transitionMap 📖CompOp
2 mathmath: surjective_transitionMap, proj_comp_transitionMap'
transitionMapLE 📖CompOp
2 mathmath: proj_comp_transitionMapLE', surjective_transitionMapLE

Theorems

NameKindAssumesProvesValidatesDepends On
lightToProfinite_map_proj_eq 📖mathematicalCategoryTheory.Functor.map
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
Profinite
lightToProfinite
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
diagram
Opposite.op
proj
CategoryTheory.NatTrans.app
DiscreteQuotient
CompHausLike.toTop
PartialOrder.toPreorder
DiscreteQuotient.instPartialOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
Profinite.diagram
Profinite.asLimitCone
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.IsCofiltered.sequentialFunctor
instCountableDiscreteQuotient
instCountableDiscreteQuotient
CategoryTheory.liftedLimitMapsToOriginal_inv_map_π
CategoryTheory.countableCategoryOpposite
CategoryTheory.instCountableCategoryNat
proj_comp_transitionMap 📖mathematicalCategoryTheory.CategoryStruct.comp
LightProfinite
CategoryTheory.Category.toCategoryStruct
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
diagram
Opposite.op
proj
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Opposite.unop
CategoryTheory.homOfLE
CategoryTheory.Limits.Cone.w
proj_comp_transitionMap' 📖mathematicalcomponent
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
transitionMap
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
diagram
Opposite.op
proj
proj_comp_transitionMap
proj_comp_transitionMapLE 📖mathematicalCategoryTheory.CategoryStruct.comp
LightProfinite
CategoryTheory.Category.toCategoryStruct
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
diagram
Opposite.op
proj
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Opposite.unop
CategoryTheory.homOfLE
CategoryTheory.Limits.Cone.w
proj_comp_transitionMapLE' 📖mathematicalcomponent
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
transitionMapLE
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
diagram
Opposite.op
proj
proj_comp_transitionMapLE
proj_surjective 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
diagram
Opposite.op
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
proj
instCountableDiscreteQuotient
lightToProfinite_map_proj_eq
DiscreteQuotient.proj_surjective
surjective_transitionMap 📖mathematicalcomponent
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
transitionMap
Function.Surjective.of_comp
proj_comp_transitionMap'
proj_surjective
surjective_transitionMapLE 📖mathematicalcomponent
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
transitionMapLE
Function.Surjective.of_comp
proj_comp_transitionMapLE'
proj_surjective

---

← Back to Index