Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Category/LightProfinite/Basic.lean

Statistics

MetricCount
DefinitionstoLightProfinite, toLightProfiniteFullyFaithful, LightDiagram, LightDiagram', diagram, toLightFunctor, toProfinite, cone, diagram, equivSmall, hasForget, instCategory, isLimit, toProfinite, LightProfinite, createsCountableLimits, equivDiagram, instInhabited, isoOfBijective, limitCone, limitConeIsLimit, of, toLightDiagram, toTopCat, instCategoryLightDiagram', instFintypeCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopologyObjFintypeCatLightProfiniteToLightProfinite, instFintypeCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopologyOfCarrier, lightDiagramToLightProfinite, lightDiagramToProfinite, lightProfiniteToCompHaus, lightProfiniteToLightDiagram, lightToProfinite, lightToProfiniteFullyFaithful
33
TheoremstoLightProfinite_map_hom_hom_apply, comp_hom_hom_hom_apply, id_hom_hom_hom_apply, epi_iff_surjective, forget_reflectsIsomorphisms, instCountableClopensCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology, instCountableDiscreteQuotient, instHasCountableLimits, instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology, instPreservesEpimorphismsProfiniteLightToProfinite, instPreservesLimitsOfShapeOppositeNatForgetContinuousMapCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology, instSecondCountableTopologyCarrierToTopAndTotallyDisconnectedSpace, instTotallyDisconnectedSpaceCarrierToTopAndSecondCountableTopology, instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus, isClosedMap, isIso_of_bijective, instEssSurjLightDiagram'LightDiagramToLightFunctor, instEssentiallySmallLightDiagram, instEssentiallySmallLightProfinite, instFaithfulFintypeCatLightProfiniteToLightProfinite, instFaithfulLightDiagram'LightDiagramToLightFunctor, instFaithfulLightDiagramProfiniteLightDiagramToProfinite, instFullFintypeCatLightProfiniteToLightProfinite, instFullLightDiagram'LightDiagramToLightFunctor, instFullLightDiagramProfiniteLightDiagramToProfinite, instIsEquivalenceLightDiagram'LightDiagramToLightFunctor, instIsEquivalenceLightDiagramLightProfiniteLightDiagramToLightProfinite, instIsEquivalenceLightProfiniteLightDiagramLightProfiniteToLightDiagram, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone, lightDiagramToLightProfinite_map, lightDiagramToLightProfinite_obj, lightDiagramToProfinite_map, lightDiagramToProfinite_obj, lightProfiniteToLightDiagram_map, lightProfiniteToLightDiagram_obj
35
Total68

FintypeCat

Definitions

NameCategoryTheorems
toLightProfinite πŸ“–CompOp
19 mathmath: LightProfinite.Extend.functorOp_obj, LightCondensed.lanPresheafIso_hom, LightCondensed.isoFinYoneda_inv_app, instFaithfulFintypeCatLightProfiniteToLightProfinite, LightCondensed.finYoneda_map, LightProfinite.Extend.cocone_ΞΉ_app, LightProfinite.Extend.functor_map, LightCondensed.isoLocallyConstantOfIsColimit_inv, toLightProfinite_map_hom_hom_apply, LightProfinite.Extend.functorOp_map, LightCondensed.lanPresheafNatIso_hom_app, LightProfinite.Extend.cocone_pt, LightCondensed.lanPresheafExt_inv, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, LightProfinite.Extend.functor_obj, LightCondensed.isoFinYoneda_hom_app, LightCondensed.instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType, LightCondensed.lanPresheafExt_hom, instFullFintypeCatLightProfiniteToLightProfinite
toLightProfiniteFullyFaithful πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
toLightProfinite_map_hom_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
carrier
botTopology
ContinuousMap.instFunLike
TopCat.Hom.hom
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CompHausLike.of
CategoryTheory.InducedCategory.Hom.hom
CompHausLike
TopCat
TopCat.instCategory
CategoryTheory.Functor.map
FintypeCat
instCategory
LightProfinite
CompHausLike.category
toLightProfinite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
concreteCategoryFintype
β€”β€”

LightDiagram

Definitions

NameCategoryTheorems
cone πŸ“–CompOp
3 mathmath: lightDiagramToLightProfinite_obj, lightDiagramToLightProfinite_map, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone
diagram πŸ“–CompOp
3 mathmath: lightDiagramToLightProfinite_obj, lightDiagramToLightProfinite_map, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone
equivSmall πŸ“–CompOpβ€”
hasForget πŸ“–CompOpβ€”
instCategory πŸ“–CompOp
17 mathmath: instFaithfulLightDiagramProfiniteLightDiagramToProfinite, lightDiagramToProfinite_map, lightProfiniteToLightDiagram_map, lightDiagramToLightProfinite_obj, lightDiagramToProfinite_obj, instFullLightDiagram'LightDiagramToLightFunctor, instIsEquivalenceLightDiagramLightProfiniteLightDiagramToLightProfinite, instEssentiallySmallLightDiagram, instIsEquivalenceLightDiagram'LightDiagramToLightFunctor, lightProfiniteToLightDiagram_obj, id_hom_hom_hom_apply, lightDiagramToLightProfinite_map, instFullLightDiagramProfiniteLightDiagramToProfinite, comp_hom_hom_hom_apply, instEssSurjLightDiagram'LightDiagramToLightFunctor, instIsEquivalenceLightProfiniteLightDiagramLightProfiniteToLightDiagram, instFaithfulLightDiagram'LightDiagramToLightFunctor
isLimit πŸ“–CompOpβ€”
toProfinite πŸ“–CompOp
6 mathmath: lightDiagramToProfinite_map, lightProfiniteToLightDiagram_map, lightDiagramToProfinite_obj, id_hom_hom_hom_apply, lightDiagramToLightProfinite_map, comp_hom_hom_hom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
comp_hom_hom_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
ContinuousMap.instFunLike
TopCat.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
CompHausLike
TopCat
TopCat.instCategory
LightDiagram
Profinite
CompHausLike.category
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instCategory
TopCat.Hom.hom'
β€”β€”
id_hom_hom_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
ContinuousMap.instFunLike
TopCat.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
CompHausLike
TopCat
TopCat.instCategory
LightDiagram
Profinite
CompHausLike.category
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instCategory
β€”β€”

LightDiagram'

Definitions

NameCategoryTheorems
diagram πŸ“–CompOpβ€”
toLightFunctor πŸ“–CompOp
4 mathmath: instFullLightDiagram'LightDiagramToLightFunctor, instIsEquivalenceLightDiagram'LightDiagramToLightFunctor, instEssSurjLightDiagram'LightDiagramToLightFunctor, instFaithfulLightDiagram'LightDiagramToLightFunctor
toProfinite πŸ“–CompOpβ€”

LightProfinite

Definitions

NameCategoryTheorems
createsCountableLimits πŸ“–CompOpβ€”
equivDiagram πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
isoOfBijective πŸ“–CompOpβ€”
limitCone πŸ“–CompOpβ€”
limitConeIsLimit πŸ“–CompOpβ€”
of πŸ“–CompOp
11 mathmath: LightCondensed.isoFinYonedaComponents_hom_apply, LightCondSet.continuous_coinducingCoprod, LightCondSet.topCatAdjunctionUnit_val_app_apply, lightDiagramToLightProfinite_obj, LightCondensed.isoFinYonedaComponents_inv_comp, LightCondensed.underlying_obj, lightCondSetToTopCat_obj_carrier, lightDiagramToLightProfinite_map, LightCondSet.topCatAdjunctionUnit_val_app, LightCondensed.underlying_map, LightCondSet.toTopCatMap_hom_apply
toLightDiagram πŸ“–CompOp
2 mathmath: lightProfiniteToLightDiagram_map, lightProfiniteToLightDiagram_obj
toTopCat πŸ“–CompOp
2 mathmath: lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_surjective πŸ“–mathematicalβ€”CategoryTheory.Epi
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
IsCompact.isClosed
CompHausLike.is_hausdorff
isCompact_range
CompHausLike.is_compact
ContinuousMap.continuous
Set.mem_compl
IsClosed.compl_mem_nhds
TopologicalSpace.IsTopologicalBasis.mem_nhds_iff
isTopologicalBasis_isClopen
instTotallyDisconnectedSpaceCarrierToTopAndSecondCountableTopology
ULift.compactSpace
Finite.compactSpace
Finite.of_fintype
ULift.instT2Space
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
instDiscreteTopologyFin
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyULift
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableULift
instCountableFin
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
instSecondCountableTopologyCarrierToTopAndTotallyDisconnectedSpace
LocallyConstant.continuous
continuous_const
CategoryTheory.cancel_epi
CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext
ULift.ext
ContinuousMap.continuous_toFun
CompHausLike.hom_ofHom
top_ne_bot
Fin.instNontrivial
Nat.instAtLeastTwoHAddOfNat
CategoryTheory.epi_iff_surjective
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
CategoryTheory.instFaithfulForget
forget_reflectsIsomorphisms πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.types
CategoryTheory.forget
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
β€”isIso_of_bijective
CategoryTheory.isIso_iff_bijective
instCountableClopensCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology πŸ“–mathematicalβ€”Countable
TopologicalSpace.Clopens
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
SecondCountableTopology
β€”TopologicalSpace.Clopens.countable_iff_secondCountable
CompHausLike.is_compact
CompHausLike.is_hausdorff
instTotallyDisconnectedSpaceCarrierToTopAndSecondCountableTopology
instSecondCountableTopologyCarrierToTopAndTotallyDisconnectedSpace
instCountableDiscreteQuotient πŸ“–mathematicalβ€”Countable
DiscreteQuotient
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
CategoryTheory.Functor.obj
LightProfinite
CompHausLike.category
SecondCountableTopology
Profinite
lightToProfinite
β€”Function.Injective.countable
Finset.countable
instCountableClopensCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology
CompHausLike.is_compact
instHasCountableLimits πŸ“–mathematicalβ€”CategoryTheory.Limits.HasCountableLimits
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
β€”β€”
instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology πŸ“–mathematicalβ€”CompHausLike.HasProp
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
β€”β€”
instPreservesEpimorphismsProfiniteLightToProfinite πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesEpimorphisms
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
Profinite
lightToProfinite
β€”Profinite.epi_iff_surjective
epi_iff_surjective
instPreservesLimitsOfShapeOppositeNatForgetContinuousMapCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimitsOfShape
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.types
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.forget
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
β€”CategoryTheory.Limits.preservesLimitsOfSize_shrink
Profinite.forget_preservesLimits
CategoryTheory.Limits.comp_preservesLimitsOfShape
CategoryTheory.preservesLimitOfShape_of_createsLimitsOfShape_and_hasLimitsOfShape
CategoryTheory.countableCategoryOpposite
CategoryTheory.instCountableCategoryNat
CategoryTheory.Limits.instHasLimitsOfShapeOfHasCountableLimitsOfCountableCategory
CategoryTheory.Limits.hasCountableLimits_of_hasLimits
Profinite.hasLimits
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
instSecondCountableTopologyCarrierToTopAndTotallyDisconnectedSpace πŸ“–mathematicalβ€”SecondCountableTopology
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
β€”CompHausLike.prop
instTotallyDisconnectedSpaceCarrierToTopAndSecondCountableTopology πŸ“–mathematicalβ€”TotallyDisconnectedSpace
TopCat.carrier
CompHausLike.toTop
TopCat.str
SecondCountableTopology
β€”CompHausLike.prop
instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus πŸ“–mathematicalβ€”TotallyDisconnectedSpace
TopCat.carrier
CompHausLike.toTop
CategoryTheory.Limits.Cone.pt
CompHaus
CompHausLike.category
CategoryTheory.Functor.comp
LightProfinite
TopCat.str
SecondCountableTopology
lightProfiniteToCompHaus
CompHaus.limitCone
β€”Subtype.totallyDisconnectedSpace
Pi.totallyDisconnectedSpace
instTotallyDisconnectedSpaceCarrierToTopAndSecondCountableTopology
isClosedMap πŸ“–mathematicalβ€”IsClosedMap
TopCat.str
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.carrier
SecondCountableTopology
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LightProfinite
CompHausLike.category
ContinuousMap
ContinuousMap.instFunLike
CompHausLike.concreteCategory
β€”CompHausLike.isClosedMap
isIso_of_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
CategoryTheory.IsIsoβ€”CategoryTheory.isIso_of_fully_faithful
CompHausLike.instFullToCompHausLike
CompHausLike.instFaithfulToCompHausLike
CompHausLike.isIso_of_bijective

(root)

Definitions

NameCategoryTheorems
LightDiagram πŸ“–CompData
17 mathmath: instFaithfulLightDiagramProfiniteLightDiagramToProfinite, lightDiagramToProfinite_map, lightProfiniteToLightDiagram_map, lightDiagramToLightProfinite_obj, lightDiagramToProfinite_obj, instFullLightDiagram'LightDiagramToLightFunctor, instIsEquivalenceLightDiagramLightProfiniteLightDiagramToLightProfinite, instEssentiallySmallLightDiagram, instIsEquivalenceLightDiagram'LightDiagramToLightFunctor, lightProfiniteToLightDiagram_obj, LightDiagram.id_hom_hom_hom_apply, lightDiagramToLightProfinite_map, instFullLightDiagramProfiniteLightDiagramToProfinite, LightDiagram.comp_hom_hom_hom_apply, instEssSurjLightDiagram'LightDiagramToLightFunctor, instIsEquivalenceLightProfiniteLightDiagramLightProfiniteToLightDiagram, instFaithfulLightDiagram'LightDiagramToLightFunctor
LightDiagram' πŸ“–CompData
4 mathmath: instFullLightDiagram'LightDiagramToLightFunctor, instIsEquivalenceLightDiagram'LightDiagramToLightFunctor, instEssSurjLightDiagram'LightDiagramToLightFunctor, instFaithfulLightDiagram'LightDiagramToLightFunctor
LightProfinite πŸ“–CompOp
101 mathmath: LightCondensed.free_internallyProjective_iff_tensor_condition, LightProfinite.proj_comp_transitionMap, LightProfinite.Extend.functorOp_obj, LightCondensed.lanPresheafIso_hom, LightCondensed.isoFinYonedaComponents_hom_apply, LightCondensed.ihomPoints_apply, LightCondensed.forget_obj_val_map, LightCondensed.ihomPoints_symm_comp, LightCondSet.continuous_coinducingCoprod, LightCondSet.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.isoFinYoneda_inv_app, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition, instFaithfulFintypeCatLightProfiniteToLightProfinite, LightCondensed.finYoneda_map, LightCondMod.isDiscrete_tfae, instPreservesEpimorphismsLightProfiniteLightCondSetLightProfiniteToLightCondSet, LightCondensed.discrete_map, LightProfinite.proj_comp_transitionMapLE', LightProfinite.Extend.cocone_ΞΉ_app, Profinite.injective_of_light, LightCondSet.topCatAdjunctionUnit_val_app_apply, lightProfiniteToLightDiagram_map, LightProfinite.isClosedMap, lightDiagramToLightProfinite_obj, LightProfinite.lightToProfinite_map_proj_eq, LightProfinite.effectiveEpi_iff_surjective, LightCondensed.internallyProjective_iff_tensor_condition, LightProfinite.instPreservesEpimorphismsProfiniteLightToProfinite, LightProfinite.instCountableDiscreteQuotient, instPreservesFiniteLimitsLightProfiniteLightCondSetLightProfiniteToLightCondSet, LightProfinite.hasSheafify, LightCondMod.LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, LightProfinite.instWEqualsLocallyBijectiveCoherentTopology, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, instPreservesLimitsOfShapeLightProfiniteLightCondSetLightProfiniteToLightCondSetOfCountableCategory, LightCondensed.isoFinYonedaComponents_inv_comp, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition', instFaithfulLightProfiniteLightCondSetLightProfiniteToLightCondSet, LightProfinite.Extend.functor_map, LightCondensed.instPreservesLimitsOfShapeOppositeLightProfiniteDiscreteCarrier, LightCondensed.forget_map_val_app, LightCondensed.isoLocallyConstantOfIsColimit_inv, FintypeCat.toLightProfinite_map_hom_hom_apply, LightProfinite.injective, LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite, LightProfinite.surjective_transitionMapLE, LightCondensed.free_internallyProjective_iff_tensor_condition', LightProfinite.instHasCountableLimits, LightProfinite.forget_reflectsIsomorphisms, instIsEquivalenceLightDiagramLightProfiniteLightDiagramToLightProfinite, LightProfinite.Extend.functorOp_map, instEssentiallySmallLightProfinite, LightCondensed.hom_ext_iff, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply, LightCondensed.underlying_obj, LightCondSet.hom_naturality_apply, LightProfinite.instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus, LightProfinite.instPreservesLimitsOfShapeOppositeNatForgetContinuousMapCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology, LightCondensed.equalizerCondition, LightCondMod.hom_naturality_apply, LightCondensed.ihomPoints_symm_apply, LightCondensed.discrete_obj, lightProfiniteToLightDiagram_obj, LightCondMod.LocallyConstant.instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, LightCondensed.lanPresheafNatIso_hom_app, lightCondSetToTopCat_obj_carrier, LightProfinite.Extend.cocone_pt, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, instFullLightProfiniteLightCondSetLightProfiniteToLightCondSet, lightDiagramToLightProfinite_map, LightProfinite.surjective_transitionMap, LightCondensed.lanPresheafExt_inv, LightProfinite.epi_iff_surjective, LightCondMod.LocallyConstant.instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf, LightCondSet.isDiscrete_tfae, LightCondSet.topCatAdjunctionUnit_val_app, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, LightProfinite.instPreregular, LightCondMod.LocallyConstant.instHasSheafifyLightProfiniteCoherentTopologyModuleCat, LightCondensed.id_val, LightProfinite.Extend.functor_obj, LightCondensed.isoFinYoneda_hom_app, LightProfinite.proj_surjective, LightProfinite.proj_comp_transitionMapLE, LightProfinite.instEpiAppOppositeNatΟ€AsLimitCone, LightCondMod.LocallyConstant.instFaithfulSheafLightProfiniteCoherentTopologyTypeConstantSheaf, LightCondensed.instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType, LightCondensed.internallyProjective_iff_tensor_condition', LightProfinite.hasSheafify_type, LightCondensed.comp_val, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom, LightCondensed.underlying_map, LightCondMod.isDiscrete_iff_isDiscrete_forget, instIsEquivalenceLightProfiniteLightDiagramLightProfiniteToLightDiagram, LightCondSet.toTopCatMap_hom_apply, LightCondensed.lanPresheafExt_hom, LightProfinite.proj_comp_transitionMap', instFullFintypeCatLightProfiniteToLightProfinite, LightCondensed.instPreservesFiniteProductsOppositeLightProfiniteVal, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology
instCategoryLightDiagram' πŸ“–CompOp
4 mathmath: instFullLightDiagram'LightDiagramToLightFunctor, instIsEquivalenceLightDiagram'LightDiagramToLightFunctor, instEssSurjLightDiagram'LightDiagramToLightFunctor, instFaithfulLightDiagram'LightDiagramToLightFunctor
instFintypeCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopologyObjFintypeCatLightProfiniteToLightProfinite πŸ“–CompOpβ€”
instFintypeCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopologyOfCarrier πŸ“–CompOpβ€”
lightDiagramToLightProfinite πŸ“–CompOp
3 mathmath: lightDiagramToLightProfinite_obj, instIsEquivalenceLightDiagramLightProfiniteLightDiagramToLightProfinite, lightDiagramToLightProfinite_map
lightDiagramToProfinite πŸ“–CompOp
4 mathmath: instFaithfulLightDiagramProfiniteLightDiagramToProfinite, lightDiagramToProfinite_map, lightDiagramToProfinite_obj, instFullLightDiagramProfiniteLightDiagramToProfinite
lightProfiniteToCompHaus πŸ“–CompOp
1 mathmath: LightProfinite.instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus
lightProfiniteToLightDiagram πŸ“–CompOp
3 mathmath: lightProfiniteToLightDiagram_map, lightProfiniteToLightDiagram_obj, instIsEquivalenceLightProfiniteLightDiagramLightProfiniteToLightDiagram
lightToProfinite πŸ“–CompOp
4 mathmath: Profinite.injective_of_light, LightProfinite.lightToProfinite_map_proj_eq, LightProfinite.instPreservesEpimorphismsProfiniteLightToProfinite, LightProfinite.instCountableDiscreteQuotient
lightToProfiniteFullyFaithful πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instEssSurjLightDiagram'LightDiagramToLightFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.EssSurj
LightDiagram'
LightDiagram
instCategoryLightDiagram'
LightDiagram.instCategory
LightDiagram'.toLightFunctor
β€”instFullLightDiagramProfiniteLightDiagramToProfinite
instFaithfulLightDiagramProfiniteLightDiagramToProfinite
CategoryTheory.Limits.instHasLimitsOfShapeOfHasCountableLimitsOfCountableCategory
CategoryTheory.Limits.hasCountableLimits_of_hasLimits
Profinite.hasLimits
CategoryTheory.countableCategoryOpposite
CategoryTheory.instCountableCategoryNat
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instEssentiallySmallLightDiagram πŸ“–mathematicalβ€”CategoryTheory.EssentiallySmall
LightDiagram
LightDiagram.instCategory
β€”β€”
instEssentiallySmallLightProfinite πŸ“–mathematicalβ€”CategoryTheory.EssentiallySmall
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
β€”β€”
instFaithfulFintypeCatLightProfiniteToLightProfinite πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
FintypeCat
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
FintypeCat.toLightProfinite
β€”CategoryTheory.Functor.FullyFaithful.faithful
instFaithfulLightDiagram'LightDiagramToLightFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
LightDiagram'
instCategoryLightDiagram'
LightDiagram
LightDiagram.instCategory
LightDiagram'.toLightFunctor
β€”Equiv.injective
instFaithfulLightDiagramProfiniteLightDiagramToProfinite πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
LightDiagram
LightDiagram.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
lightDiagramToProfinite
β€”CategoryTheory.InducedCategory.faithful
instFullFintypeCatLightProfiniteToLightProfinite πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
FintypeCat
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
FintypeCat.toLightProfinite
β€”CategoryTheory.Functor.FullyFaithful.full
instFullLightDiagram'LightDiagramToLightFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
LightDiagram'
instCategoryLightDiagram'
LightDiagram
LightDiagram.instCategory
LightDiagram'.toLightFunctor
β€”β€”
instFullLightDiagramProfiniteLightDiagramToProfinite πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
LightDiagram
LightDiagram.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
lightDiagramToProfinite
β€”CategoryTheory.InducedCategory.full
instIsEquivalenceLightDiagram'LightDiagramToLightFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
LightDiagram'
instCategoryLightDiagram'
LightDiagram
LightDiagram.instCategory
LightDiagram'.toLightFunctor
β€”instFaithfulLightDiagram'LightDiagramToLightFunctor
instFullLightDiagram'LightDiagramToLightFunctor
instEssSurjLightDiagram'LightDiagramToLightFunctor
instIsEquivalenceLightDiagramLightProfiniteLightDiagramToLightProfinite πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
LightDiagram
LightDiagram.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
lightDiagramToLightProfinite
β€”CategoryTheory.Equivalence.isEquivalence_inverse
instIsEquivalenceLightProfiniteLightDiagramLightProfiniteToLightDiagram πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
LightDiagram
LightDiagram.instCategory
lightProfiniteToLightDiagram
β€”CategoryTheory.Equivalence.isEquivalence_functor
instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone πŸ“–mathematicalβ€”SecondCountableTopology
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
CategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
Profinite
CompHausLike.category
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
LightDiagram.diagram
FintypeCat.toProfinite
LightDiagram.cone
β€”TopologicalSpace.Clopens.countable_iff_secondCountable
CompHausLike.is_compact
CompHausLike.is_hausdorff
Profinite.instTotallyDisconnectedSpaceCarrierToTop
Countable.of_equiv
Function.Surjective.countable
instCountableSigma
instCountableNat
Finite.to_countable
Finite.of_injective
Pi.finite
Finite.of_fintype
LocallyConstant.coe_injective
Profinite.exists_locallyConstant
CategoryTheory.isCofiltered_op_of_isFiltered
CategoryTheory.isFiltered_of_directed_le_nonempty
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
lightDiagramToLightProfinite_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
LightDiagram
LightDiagram.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
lightDiagramToLightProfinite
CategoryTheory.InducedCategory.homMk
CompHausLike
TopCat
TopCat.instCategory
CompHausLike.toTop
LightProfinite.of
CategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
Profinite
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
LightDiagram.diagram
FintypeCat.toProfinite
LightDiagram.cone
instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone
CategoryTheory.InducedCategory.Hom.hom
LightDiagram.toProfinite
β€”instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone
lightDiagramToLightProfinite_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
LightDiagram
LightDiagram.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
lightDiagramToLightProfinite
LightProfinite.of
CompHausLike.toTop
CategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
Profinite
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
LightDiagram.diagram
FintypeCat.toProfinite
LightDiagram.cone
instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone
β€”β€”
lightDiagramToProfinite_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
LightDiagram
LightDiagram.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
lightDiagramToProfinite
CategoryTheory.InducedCategory.Hom.hom
LightDiagram.toProfinite
β€”β€”
lightDiagramToProfinite_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
LightDiagram
LightDiagram.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
lightDiagramToProfinite
LightDiagram.toProfinite
β€”β€”
lightProfiniteToLightDiagram_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
LightDiagram
LightDiagram.instCategory
lightProfiniteToLightDiagram
CategoryTheory.InducedCategory.homMk
Profinite
LightDiagram.toProfinite
LightProfinite.toLightDiagram
CompHausLike
TopCat
TopCat.instCategory
CompHausLike.toTop
CategoryTheory.InducedCategory.Hom.hom
β€”β€”
lightProfiniteToLightDiagram_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
LightDiagram
LightDiagram.instCategory
lightProfiniteToLightDiagram
LightProfinite.toLightDiagram
β€”β€”

---

← Back to Index