Documentation Verification Report

Extend

📁 Source: Mathlib/Topology/Category/LightProfinite/Extend.lean

Statistics

MetricCount
Definitionscocone, cone, functor, functorOp, isColimitCocone, isLimitCone, asLimit', asLimitCone', diagram', fintypeDiagram', lim'
11
Theoremscocone_pt, cocone_ι_app, functorOp_final, functorOp_map, functorOp_obj, functor_initial, functor_map, functor_obj, instEpiAppOppositeNatπAsLimitCone
9
Total20

LightProfinite

Definitions

NameCategoryTheorems
asLimit' 📖CompOp
asLimitCone' 📖CompOp
diagram' 📖CompOp
fintypeDiagram' 📖CompOp
lim' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instEpiAppOppositeNatπAsLimitCone 📖mathematicalCategoryTheory.Epi
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
diagram
asLimitCone
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
epi_iff_surjective
proj_surjective

LightProfinite.Extend

Definitions

NameCategoryTheorems
cocone 📖CompOp
4 mathmath: LightCondensed.lanPresheafIso_hom, cocone_ι_app, LightCondensed.lanPresheafNatIso_hom_app, cocone_pt
cone 📖CompOp
functor 📖CompOp
3 mathmath: functor_map, functor_initial, functor_obj
functorOp 📖CompOp
4 mathmath: functorOp_obj, functorOp_map, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, functorOp_final
isColimitCocone 📖CompOp
isLimitCone 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.CostructuredArrow
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
cocone
CategoryTheory.Functor.obj
cocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
cocone
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
functorOp_final 📖mathematicalCategoryTheory.Epi
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
FintypeCat.toLightProfinite
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Functor.Final
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
functorOp
functor_initial
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Functor.final_comp
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.final_op_of_initial
functorOp_map 📖mathematicalCategoryTheory.Functor.map
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.CostructuredArrow
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
Opposite.op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
functorOp
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.Functor.obj
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.homMk
functorOp_obj 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.CostructuredArrow
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
Opposite.op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
functorOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
functor_initial 📖mathematicalCategoryTheory.Epi
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
FintypeCat.toLightProfinite
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Functor.Initial
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
functor
CategoryTheory.Functor.initial_iff_comp_equivalence
CategoryTheory.StructuredArrow.isEquivalence_post
CompHausLike.instFullToCompHausLike
CompHausLike.instFaithfulToCompHausLike
CategoryTheory.Functor.map_epi
LightProfinite.instPreservesEpimorphismsProfiniteLightToProfinite
Profinite.Extend.functor_initial
CategoryTheory.isCofiltered_op_of_isFiltered
CategoryTheory.isFiltered_of_directed_le_nonempty
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
CategoryTheory.preservesLimit_of_createsLimit_and_hasLimit
CategoryTheory.countableCategoryOpposite
CategoryTheory.instCountableCategoryNat
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.instHasLimitsOfShapeOfHasCountableLimitsOfCountableCategory
CategoryTheory.Limits.hasCountableLimits_of_hasLimits
Profinite.hasLimits
functor_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.StructuredArrow
FintypeCat
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat.toLightProfinite
CategoryTheory.instCategoryStructuredArrow
functor
CategoryTheory.StructuredArrow.homMk
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
functor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.StructuredArrow
FintypeCat
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat.toLightProfinite
CategoryTheory.instCategoryStructuredArrow
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π

---

← Back to Index