Documentation Verification Report

Injective

📁 Source: Mathlib/Topology/Category/LightProfinite/Injective.lean

Statistics

MetricCount
Definitions0
Theoremsinjective, exists_lift_of_finite_of_injective_of_surjective, exists_lift_of_finite_of_mono_of_epi, injective_of_finite, injective_of_light
5
Total5

LightProfinite

Theorems

NameKindAssumesProvesValidatesDepends On
injective 📖mathematicalCategoryTheory.Injective
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Injective.factors
Profinite.injective_of_light
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.preservesLimitOfShape_of_createsLimitsOfShape_and_hasLimitsOfShape
CategoryTheory.instCountableCategoryOfFinCategory
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasCountableLimits
CategoryTheory.Limits.hasCountableLimits_of_hasLimits
Profinite.hasLimits
CategoryTheory.Functor.FullyFaithful.map_injective
CompHausLike.is_compact
CompHausLike.is_hausdorff

Profinite

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lift_of_finite_of_injective_of_surjective 📖ContinuousFinite.of_surjective
Topology.IsClosedEmbedding.isClosed_iff_image_isClosed
Continuous.isClosedEmbedding
IsClosed.preimage
isClosed_singleton
T2Space.t1Space
Set.pairwiseDisjoint_iff
IsClopen.preimage
isClopen_discrete
Finite.instDiscreteTopology
Set.mem_preimage
Set.mem_singleton_iff
Set.mem_image
exists_clopen_partition_of_clopen_cover
Set.univ_subset_iff
subset_trans
Set.instIsTransSubset
IsLocallyConstant.continuous
IsLocallyConstant.iff_isOpen_fiber
Set.ext
Set.preimage_liftCover
Set.mem_iUnion
Set.liftCover_of_mem
symm
IsEquiv.toSymm
eq_isEquiv
exists_lift_of_finite_of_mono_of_epi 📖CategoryTheory.CategoryStruct.comp
Profinite
CategoryTheory.Category.toCategoryStruct
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
exists_lift_of_finite_of_injective_of_surjective
CompHausLike.is_compact
CompHausLike.is_hausdorff
instTotallyDisconnectedSpaceCarrierToTop
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
CompHausLike.mono_iff_injective
epi_iff_surjective
instHasPropTotallyDisconnectedSpaceCarrier
CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext
CategoryTheory.comp_apply
injective_of_finite 📖mathematicalCategoryTheory.Injective
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
Finite.compactSpace
Finite.of_fintype
DiscreteTopology.toT2Space
instDiscreteTopologyPUnit
instHasPropTotallyDisconnectedSpaceCarrier
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
CategoryTheory.IsSplitEpi.mk'
exists_lift_of_finite_of_mono_of_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsRegularEpi
CategoryTheory.instIsRegularEpiOfIsSplitEpi
CategoryTheory.Limits.IsTerminal.hom_ext
injective_of_light 📖mathematicalCategoryTheory.Injective
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
LightProfinite
SecondCountableTopology
lightToProfinite
Finite.of_fintype
Nonempty.map
LightProfinite.epi_iff_surjective
LightProfinite.surjective_transitionMap
CategoryTheory.Injective.factors
injective_of_finite
CategoryTheory.Functor.map_comp
LightProfinite.proj_comp_transitionMap
exists_lift_of_finite_of_mono_of_epi
CategoryTheory.Functor.map_epi
LightProfinite.instPreservesEpimorphismsProfiniteLightToProfinite
Subtype.prop
CategoryTheory.preservesLimit_of_createsLimit_and_hasLimit
CategoryTheory.countableCategoryOpposite
CategoryTheory.instCountableCategoryNat
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.instHasLimitsOfShapeOfHasCountableLimitsOfCountableCategory
CategoryTheory.Limits.hasCountableLimits_of_hasLimits
hasLimits
CategoryTheory.Limits.IsLimit.uniq
CompHausLike.is_compact
CompHausLike.is_hausdorff
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsLimit.fac

---

← Back to Index