Documentation Verification Report

Sequence

πŸ“ Source: Mathlib/Topology/Category/LightProfinite/Sequence.lean

Statistics

MetricCount
DefinitionsNatUnionInfty, instCoeNatCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopologyNatUnionInfty, natUnionInftyEmbedding, Β«termβ„•βˆͺ{∞}Β»
4
Theoremscontinuous_iff_convergent, instMetrizableSpaceOnePointNat, isClosedEmbedding_natUnionInftyEmbedding
3
Total7

LightProfinite

Definitions

NameCategoryTheorems
NatUnionInfty πŸ“–CompOp
1 mathmath: continuous_iff_convergent
instCoeNatCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopologyNatUnionInfty πŸ“–CompOpβ€”
natUnionInftyEmbedding πŸ“–CompOp
1 mathmath: isClosedEmbedding_natUnionInftyEmbedding
Β«termβ„•βˆͺ{∞}»»} πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_iff_convergent πŸ“–mathematicalβ€”Continuous
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
SecondCountableTopology
NatUnionInfty
OnePoint.instTopologicalSpace
instTopologicalSpaceNat
Filter.Tendsto
OnePoint.some
Filter.atTop
Nat.instPreorder
nhds
OnePoint.infty
β€”OnePoint.continuous_iff_from_nat
instMetrizableSpaceOnePointNat πŸ“–mathematicalβ€”TopologicalSpace.MetrizableSpace
OnePoint
OnePoint.instTopologicalSpace
instTopologicalSpaceNat
β€”Topology.IsEmbedding.metrizableSpace
EMetricSpace.metrizableSpace
Topology.IsClosedEmbedding.toIsEmbedding
isClosedEmbedding_natUnionInftyEmbedding
isClosedEmbedding_natUnionInftyEmbedding πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
OnePoint
Real
OnePoint.instTopologicalSpace
instTopologicalSpaceNat
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
natUnionInftyEmbedding
β€”Topology.IsClosedEmbedding.of_continuous_injective_isClosedMap
ContinuousMap.continuous
Nat.cast_zero
Nat.cast_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
one_div
AddRightCancelSemigroup.toIsRightCancelAdd
IsCompact.isClosed
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
IsCompact.image
IsClosed.isCompact
OnePoint.instCompactSpace

---

← Back to Index