Documentation Verification Report

Basic

📁 Source: Mathlib/Topology/Category/Profinite/Basic.lean

Statistics

MetricCount
DefinitionstoProfinite, toProfiniteObj, botTopology, toProfinite, toProfiniteFullyFaithful, instInhabited, limitCone, limitConeIsLimit, of, pi, createsLimits, reflective, toCompHausEquivalence, toProfiniteAdjToCompHaus, toTopCat, createsLimits, reflective, instFintypeCarrierToTopTotallyDisconnectedSpaceObjFintypeCatProfiniteToProfinite, instFintypeCarrierToTopTotallyDisconnectedSpaceOfCarrier, profiniteToCompHaus
20
TheoremstoProfinite_obj', discreteTopology, toProfinite_map_hom_hom_apply, epi_iff_surjective, forget_preservesLimits, hasColimits, hasLimits, instHasPropTotallyDisconnectedSpaceCarrier, instTotallyDisconnectedSpaceCarrierToTop, instFaithfulFintypeCatProfiniteToProfinite, instFullFintypeCatProfiniteToProfinite, instTotallyDisconnectedSpaceCarrierToTopTrueObjProfiniteCompHausProfiniteToCompHaus
12
Total32

CompHaus

Definitions

NameCategoryTheorems
toProfinite 📖CompOp
1 mathmath: toProfinite_obj'
toProfiniteObj 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
toProfinite_obj' 📖mathematical—TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
CategoryTheory.Functor.obj
CompHaus
CompHausLike.category
Profinite
toProfinite
ConnectedComponents
——

FintypeCat

Definitions

NameCategoryTheorems
botTopology 📖CompOp
3 mathmath: toProfinite_map_hom_hom_apply, toLightProfinite_map_hom_hom_apply, discreteTopology
toProfinite 📖CompOp
26 mathmath: Profinite.Extend.cocone_pt, instFullFintypeCatProfiniteToProfinite, Profinite.Extend.functorOp_map, Profinite.Extend.cone_π_app, Condensed.lanPresheafExt_inv, instFaithfulFintypeCatProfiniteToProfinite, lightDiagramToLightProfinite_obj, Profinite.Extend.functorOp_obj, Condensed.finYoneda_map, toProfinite_map_hom_hom_apply, Condensed.instIsRightKanExtensionFintypeCatCondensedModProfiniteProfiniteSolidProfiniteSolidCounit, Condensed.isoLocallyConstantOfIsColimit_inv, Condensed.lanPresheafNatIso_hom_app, Profinite.Extend.functor_obj, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, Profinite.Extend.cocone_ι_app, Condensed.isoFinYoneda_hom_app, Profinite.Extend.cone_pt, lightDiagramToLightProfinite_map, Condensed.lanPresheafExt_hom, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone, Condensed.isoFinYoneda_inv_app, Profinite.Extend.functor_map, Condensed.locallyConstantIsoFinYoneda_hom_app, Condensed.lanPresheafIso_hom, Profinite.exists_hom
toProfiniteFullyFaithful 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
discreteTopology 📖mathematical—DiscreteTopology
carrier
botTopology
——
toProfinite_map_hom_hom_apply 📖mathematical—DFunLike.coe
ContinuousMap
carrier
botTopology
ContinuousMap.instFunLike
TopCat.Hom.hom
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CompHausLike.of
CategoryTheory.InducedCategory.Hom.hom
CompHausLike
TopCat
TopCat.instCategory
CategoryTheory.Functor.map
FintypeCat
instCategory
Profinite
CompHausLike.category
toProfinite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
concreteCategoryFintype
——

Profinite

Definitions

NameCategoryTheorems
instInhabited 📖CompOp—
limitCone 📖CompOp
4 mathmath: isIso_indexCone_lift, ProfiniteAddGrp.instIsTopologicalAddGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousAddMonoidHomToProfiniteContinuousMap, ProfiniteGrp.instIsTopologicalGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousMonoidHomToProfiniteContinuousMap, isIso_asLimitCone_lift
limitConeIsLimit 📖CompOp
2 mathmath: isIso_indexCone_lift, isIso_asLimitCone_lift
of 📖CompOp
3 mathmath: Condensed.isoFinYonedaComponents_hom_apply, projective_ultrafilter, Condensed.isoFinYonedaComponents_inv_comp
pi 📖CompOp—
toCompHausEquivalence 📖CompOp—
toProfiniteAdjToCompHaus 📖CompOp—
toTopCat 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_surjective 📖mathematical—CategoryTheory.Epi
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
—Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
IsCompact.isClosed
CompHausLike.is_hausdorff
isCompact_range
CompHausLike.is_compact
ContinuousMap.continuous
Set.mem_compl
IsClosed.compl_mem_nhds
TopologicalSpace.IsTopologicalBasis.mem_nhds_iff
isTopologicalBasis_isClopen
instTotallyDisconnectedSpaceCarrierToTop
ULift.compactSpace
Finite.compactSpace
Finite.of_fintype
ULift.instT2Space
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
instDiscreteTopologyFin
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyULift
instHasPropTotallyDisconnectedSpaceCarrier
LocallyConstant.continuous
continuous_const
CategoryTheory.cancel_epi
CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext
ULift.ext
ContinuousMap.continuous_toFun
CategoryTheory.ConcreteCategory.hom_ofHom
top_ne_bot
Fin.instNontrivial
Nat.instAtLeastTwoHAddOfNat
CategoryTheory.epi_iff_surjective
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
CategoryTheory.instFaithfulForget
forget_preservesLimits 📖mathematical—CategoryTheory.Limits.PreservesLimits
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.types
CategoryTheory.forget
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
—CategoryTheory.Limits.comp_preservesLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.instIsRightAdjointOfMonadicRightAdjoint
TopCat.forget_preservesLimits
hasColimits 📖mathematical—CategoryTheory.Limits.HasColimits
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
—CategoryTheory.hasColimits_of_reflective
CompHaus.hasColimits
hasLimits 📖mathematical—CategoryTheory.Limits.HasLimits
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
—CategoryTheory.hasLimits_of_hasLimits_createsLimits
TopCat.topCat_hasLimits
instHasPropTotallyDisconnectedSpaceCarrier 📖mathematical—CompHausLike.HasProp
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
——
instTotallyDisconnectedSpaceCarrierToTop 📖mathematical—TotallyDisconnectedSpace
TopCat.carrier
CompHausLike.toTop
TopCat.str
—CompHausLike.prop

Profinite.toCompHaus

Definitions

NameCategoryTheorems
createsLimits 📖CompOp—
reflective 📖CompOp—

Profinite.toTopCat

Definitions

NameCategoryTheorems
createsLimits 📖CompOp—
reflective 📖CompOp—

(root)

Definitions

NameCategoryTheorems
instFintypeCarrierToTopTotallyDisconnectedSpaceObjFintypeCatProfiniteToProfinite 📖CompOp—
instFintypeCarrierToTopTotallyDisconnectedSpaceOfCarrier 📖CompOp—
profiniteToCompHaus 📖CompOp
6 mathmath: CondensedMod.isDiscrete_tfae, Profinite.instReflectsEffectiveEpisCompHausProfiniteToCompHaus, instTotallyDisconnectedSpaceCarrierToTopTrueObjProfiniteCompHausProfiniteToCompHaus, Profinite.instPreservesEffectiveEpisCompHausProfiniteToCompHaus, CondensedSet.isDiscrete_tfae, Profinite.instEffectivelyEnoughCompHausProfiniteToCompHaus

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulFintypeCatProfiniteToProfinite 📖mathematical—CategoryTheory.Functor.Faithful
FintypeCat
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
FintypeCat.toProfinite
—CategoryTheory.Functor.FullyFaithful.faithful
instFullFintypeCatProfiniteToProfinite 📖mathematical—CategoryTheory.Functor.Full
FintypeCat
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
FintypeCat.toProfinite
—CategoryTheory.Functor.FullyFaithful.full
instTotallyDisconnectedSpaceCarrierToTopTrueObjProfiniteCompHausProfiniteToCompHaus 📖mathematical—TotallyDisconnectedSpace
TopCat.carrier
CompHausLike.toTop
CategoryTheory.Functor.obj
Profinite
CompHausLike.category
TopCat.str
CompHaus
profiniteToCompHaus
—CompHausLike.prop

---

← Back to Index