Documentation Verification Report

Extend

📁 Source: Mathlib/Topology/Category/Profinite/Extend.lean

Statistics

MetricCount
Definitionscocone, cone, functor, functorOp, isColimitCocone, isLimitCone, asLimit', asLimitCone', diagram', fintypeDiagram', lim'
11
Theoremscocone_pt, cocone_ι_app, cone_pt, cone_π_app, functorOp_final, functorOp_map, functorOp_obj, functor_initial, functor_map, functor_obj, exists_hom, instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone
12
Total23

Profinite

Definitions

NameCategoryTheorems
asLimit' 📖CompOp
asLimitCone' 📖CompOp
diagram' 📖CompOp
fintypeDiagram' 📖CompOp
lim' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
Profinite
CategoryTheory.Category.toCategoryStruct
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
FintypeCat.toProfinite
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Functor.map
IsLocallyConstant.iff_continuous
ContinuousMap.continuous
exists_locallyConstant
CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext
LocallyConstant.congr_fun
instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone 📖mathematicalCategoryTheory.Epi
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
DiscreteQuotient
CompHausLike.toTop
Preorder.smallCategory
PartialOrder.toPreorder
DiscreteQuotient.instPartialOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
diagram
asLimitCone
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
epi_iff_surjective
DiscreteQuotient.proj_surjective

Profinite.Extend

Definitions

NameCategoryTheorems
cocone 📖CompOp
4 mathmath: cocone_pt, Condensed.lanPresheafNatIso_hom_app, cocone_ι_app, Condensed.lanPresheafIso_hom
cone 📖CompOp
2 mathmath: cone_π_app, cone_pt
functor 📖CompOp
3 mathmath: functor_obj, functor_initial, functor_map
functorOp 📖CompOp
4 mathmath: functorOp_map, functorOp_obj, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, functorOp_final
isColimitCocone 📖CompOp
isLimitCone 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.CostructuredArrow
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.op
FintypeCat.toProfinite
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
cocone
CategoryTheory.Functor.obj
cocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.op
FintypeCat.toProfinite
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
cocone
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
cone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.StructuredArrow
FintypeCat
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
FintypeCat.toProfinite
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
cone
CategoryTheory.Functor.obj
cone_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.StructuredArrow
FintypeCat
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
FintypeCat.toProfinite
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Limits.Cone.π
cone
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
functorOp_final 📖mathematicalCategoryTheory.Epi
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
FintypeCat.toProfinite
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Functor.Final
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
functorOp
functor_initial
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Functor.final_comp
CategoryTheory.Functor.final_op_of_initial
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
functorOp_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.op
FintypeCat.toProfinite
Opposite.op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
functorOp
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.Functor.obj
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
Quiver.Hom.unop
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.homMk
functorOp_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.op
FintypeCat.toProfinite
Opposite.op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
functorOp
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
functor_initial 📖mathematicalCategoryTheory.Epi
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
FintypeCat.toProfinite
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Functor.Initial
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
functor
CategoryTheory.Functor.initial_iff_of_isCofiltered
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
CategoryTheory.instIsCofilteredULiftHom
CategoryTheory.instIsCofilteredULift
Profinite.exists_hom
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_injective
instFaithfulFintypeCatProfiniteToProfinite
CategoryTheory.Epi.left_cancellation
CategoryTheory.Functor.initial_of_equivalence_comp
CategoryTheory.Equivalence.isEquivalence_inverse
functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.StructuredArrow
FintypeCat
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat.toProfinite
CategoryTheory.instCategoryStructuredArrow
functor
CategoryTheory.StructuredArrow.homMk
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
FintypeCat
FintypeCat.instCategory
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat.toProfinite
CategoryTheory.instCategoryStructuredArrow
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π

---

← Back to Index