Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean

Statistics

MetricCount
DefinitionsGoodProducts, equiv_range, eval, range, P, eval, instLinearOrder, isGood, Proj, ProjRestrict, ProjRestricts, contained, e, iso_map, ord, spanCone, spanCone_isLimit, spanFunctor, spanFunctorIsoIndexFunctor, term, Ο€, Ο€s, Ο€s'
23
Theoremsequiv_toFun_eq_eval, injective, linearIndependent_iff_range, span_iff_products, evalFacProp, evalFacProps, eval_eq, eval_Ο€s, eval_Ο€s', eval_Ο€s_image, eval_Ο€s_image', head!_le_of_lt, head_lt_ord_of_isGood, instWellFoundedLT, isGood_mono, lt_iff_lex_lt, lt_ord_of_lt, prop_of_isGood, prop_of_isGood_of_contained, rel_head!_of_mem, ProjRestrict_coe, ProjRestricts_coe, coe_Ο€s, coe_Ο€s', contained_eq_proj, contained_proj, continuous_proj, continuous_projRestrict, continuous_projRestricts, injective_Ο€s, injective_Ο€s', isClosed_proj, iso_map_bijective, ord_term, ord_term_aux, projRestricts_comp_projRestrict, projRestricts_eq_comp, projRestricts_eq_id, proj_comp_of_subset, proj_eq_of_subset, proj_eq_self, proj_prop_eq_self, spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe, spanFunctorIsoIndexFunctor_inv_app, surjective_projRestricts, term_ord_aux, Ο€s'_apply_apply, Ο€s_apply_apply
48
Total71

Profinite.NobelingProof

Definitions

NameCategoryTheorems
GoodProducts πŸ“–CompOp
11 mathmath: GoodProducts.sum_to_range, GoodProducts.linearIndependent_comp_of_eval, GoodProducts.equiv_toFun_eq_eval, GoodProducts.span_sum, GoodProducts.injective_sum_to, GoodProducts.good_lt_maxProducts, GoodProducts.union_succ, GoodProducts.linearIndependent_iff_sum, GoodProducts.square_commutes, GoodProducts.maxToGood_injective, GoodProducts.sum_equiv_comp_eval_eq_elim
P πŸ“–MathDef
2 mathmath: GoodProducts.P0, GoodProducts.linearIndependentAux
Proj πŸ“–CompOp
7 mathmath: proj_eq_self, ProjRestrict_coe, C0_projOrd, C1_projOrd, proj_comp_of_subset, ProjRestricts_coe, continuous_proj
ProjRestrict πŸ“–CompOp
7 mathmath: projRestricts_comp_projRestrict, coe_Ο€s, fin_comap_jointlySurjective, ProjRestrict_coe, continuous_projRestrict, Ο€s_apply_apply, Products.evalFacProp
ProjRestricts πŸ“–CompOp
9 mathmath: projRestricts_comp_projRestrict, Ο€s'_apply_apply, Products.evalFacProps, projRestricts_eq_id, projRestricts_eq_comp, ProjRestricts_coe, continuous_projRestricts, coe_Ο€s', surjective_projRestricts
contained πŸ“–MathDef
3 mathmath: contained_C1, contained_proj, contained_C'
e πŸ“–CompOp
4 mathmath: e_mem_of_eq_true, GoodProducts.finsuppSum_mem_span_eval, Products.evalCons, one_sub_e_mem_of_false
iso_map πŸ“–CompOp
2 mathmath: iso_map_bijective, spanFunctorIsoIndexFunctor_inv_app
ord πŸ“–CompOp
33 mathmath: GoodProducts.sum_to_range, injective_Ο€s', coe_Ο€s, Products.limitOrdinal, ord_term_aux, GoodProducts.span_sum, term_ord_aux, ord_term, succ_exact, GoodProducts.smaller_factorization, Ο€s'_apply_apply, contained_eq_proj, GoodProducts.injective_sum_to, GoodProducts.good_lt_maxProducts, GoodProducts.union_succ, GoodProducts.linearIndependent_iff_smaller, GoodProducts.linearIndependent_iff_sum, C0_projOrd, C1_projOrd, Ο€s_apply_apply, GoodProducts.square_commutes, contained_C1, isClosed_proj, swapTrue_mem_C1, contained_proj, GoodProducts.sum_equiv_comp_eval_eq_elim, CC_comp_zero, CC_exact, Products.prop_of_isGood_of_contained, injective_Ο€s, coe_Ο€s', GoodProducts.range_equiv_smaller_toFun_bijective, succ_mono
spanCone πŸ“–CompOpβ€”
spanCone_isLimit πŸ“–CompOpβ€”
spanFunctor πŸ“–CompOp
2 mathmath: spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe, spanFunctorIsoIndexFunctor_inv_app
spanFunctorIsoIndexFunctor πŸ“–CompOp
2 mathmath: spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe, spanFunctorIsoIndexFunctor_inv_app
term πŸ“–CompOp
8 math, 1 bridgemath: ord_term_aux, term_ord_aux, ord_term, mem_C'_eq_false, GoodProducts.chain'_cons_of_lt, GoodProducts.max_eq_o_cons_tail, GoodProducts.isChain_cons_of_lt, GoodProducts.head!_eq_o_of_maxProducts
bridge: swapTrue_eq_true
Ο€ πŸ“–CompOp
52 mathmath: GoodProducts.sum_to_range, projRestricts_comp_projRestrict, injective_Ο€s', coe_Ο€s, Products.limitOrdinal, Products.eval_Ο€s, spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe, Products.eval_Ο€s', GoodProducts.span_sum, fin_comap_jointlySurjective, GoodProducts.spanFin, succ_exact, GoodProducts.smaller_factorization, Ο€s'_apply_apply, Products.evalFacProps, projRestricts_eq_id, contained_eq_proj, ProjRestrict_coe, GoodProducts.injective_sum_to, iso_map_bijective, GoodProducts.good_lt_maxProducts, GoodProducts.union_succ, projRestricts_eq_comp, Products.eval_Ο€s_image', factors_prod_eq_basis_of_ne, continuous_projRestrict, GoodProducts.linearIndependent_iff_smaller, proj_eq_of_subset, GoodProducts.linearIndependent_iff_sum, Ο€s_apply_apply, GoodProducts.finsuppSum_mem_span_eval, GoodProducts.square_commutes, spanFinBasis.span, contained_C1, isClosed_proj, ProjRestricts_coe, swapTrue_mem_C1, continuous_projRestricts, contained_proj, proj_prop_eq_self, GoodProducts.sum_equiv_comp_eval_eq_elim, CC_comp_zero, Products.evalFacProp, CC_exact, injective_Ο€s, coe_Ο€s', GoodProducts.range_equiv_smaller_toFun_bijective, Products.eval_Ο€s_image, factors_prod_eq_basis, factors_prod_eq_basis_of_eq, surjective_projRestricts, succ_mono
Ο€s πŸ“–CompOp
11 mathmath: coe_Ο€s, Products.eval_Ο€s, succ_exact, GoodProducts.smaller_factorization, Ο€s_apply_apply, GoodProducts.square_commutes, CC_comp_zero, CC_exact, injective_Ο€s, Products.eval_Ο€s_image, succ_mono
Ο€s' πŸ“–CompOp
5 mathmath: injective_Ο€s', Products.eval_Ο€s', Ο€s'_apply_apply, Products.eval_Ο€s_image', coe_Ο€s'

Theorems

NameKindAssumesProvesValidatesDepends On
ProjRestrict_coe πŸ“–mathematicalβ€”Set
Set.instMembership
Ο€
ProjRestrict
Proj
β€”β€”
ProjRestricts_coe πŸ“–mathematicalβ€”Set
Set.instMembership
Ο€
ProjRestricts
Proj
β€”β€”
coe_Ο€s πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instFunLike
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
Ο€
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Ο€s
ProjRestrict
β€”β€”
coe_Ο€s' πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
LocallyConstant.toFun
Set.Elem
Ο€
Preorder.toLT
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Ο€s'
ProjRestricts
lt_of_lt_of_le
β€”β€”
contained_eq_proj πŸ“–mathematicalcontainedΟ€
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
β€”proj_prop_eq_self
contained_proj πŸ“–mathematicalβ€”contained
Ο€
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
β€”β€”
continuous_proj πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
instTopologicalSpaceBool
Proj
β€”continuous_pi
continuous_const
continuous_apply
continuous_projRestrict πŸ“–mathematicalβ€”Continuous
Set.Elem
Ο€
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
ProjRestrict
β€”Continuous.restrict
continuous_proj
continuous_projRestricts πŸ“–mathematicalβ€”Continuous
Set.Elem
Ο€
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
ProjRestricts
β€”Continuous.comp
proj_eq_of_subset
Homeomorph.continuous
continuous_projRestrict
injective_Ο€s πŸ“–mathematicalβ€”LocallyConstant
Set.Elem
Ο€
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Ο€s
β€”LocallyConstant.comap_injective
continuous_projRestrict
Set.surjective_mapsTo_image_restrict
injective_Ο€s' πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
LocallyConstant
Set.Elem
Ο€
Preorder.toLT
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Ο€s'
β€”LocallyConstant.comap_injective
continuous_projRestricts
surjective_projRestricts
lt_of_lt_of_le
isClosed_proj πŸ“–mathematicalβ€”IsClosed
Pi.topologicalSpace
instTopologicalSpaceBool
Ο€
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
β€”Continuous.isClosedMap
Function.compactSpace
Finite.compactSpace
Bool.instFinite
Pi.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
instDiscreteTopologyBool
continuous_proj
iso_map_bijective πŸ“–mathematicalβ€”Function.Bijective
Set.Elem
Ο€
Profinite.IndexFunctor.obj
instTopologicalSpaceBool
DFunLike.coe
ContinuousMap
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
ContinuousMap.instFunLike
iso_map
β€”Subtype.prop
ord_term πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
ord
term
β€”isWellOrder_lt
term_ord_aux
ord_term_aux
ord_term_aux πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
ord
term
β€”isWellOrder_lt
Ordinal.typein_enum
projRestricts_comp_projRestrict πŸ“–mathematicalβ€”Set.Elem
Ο€
ProjRestricts
ProjRestrict
β€”β€”
projRestricts_eq_comp πŸ“–mathematicalβ€”Set.Elem
Ο€
ProjRestricts
β€”β€”
projRestricts_eq_id πŸ“–mathematicalβ€”ProjRestricts
Set.Elem
Ο€
β€”β€”
proj_comp_of_subset πŸ“–mathematicalβ€”Projβ€”β€”
proj_eq_of_subset πŸ“–mathematicalβ€”Ο€β€”Set.ext
proj_comp_of_subset
Set.image_comp
proj_eq_self πŸ“–mathematicalβ€”Projβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
proj_prop_eq_self πŸ“–mathematicalβ€”Ο€β€”Set.ext
proj_eq_self
spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe πŸ“–mathematicalIsCompact
Pi.topologicalSpace
instTopologicalSpaceBool
Set
Set.instMembership
Profinite.IndexFunctor.obj
Finset
Finset.instMembership
Opposite.unop
DFunLike.coe
ContinuousMap
Set.Elem
Ο€
instTopologicalSpaceSubtype
ContinuousMap.instFunLike
TopCat.Hom.hom
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
Finset.partialOrder
Profinite
CompHausLike.category
spanFunctor
Profinite.indexFunctor
CategoryTheory.InducedCategory.Hom.hom
CompHausLike
TopCat
TopCat.instCategory
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
instDiscreteTopologyBool
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
spanFunctorIsoIndexFunctor
β€”TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
instDiscreteTopologyBool
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
spanFunctorIsoIndexFunctor_inv_app πŸ“–mathematicalIsCompact
Pi.topologicalSpace
instTopologicalSpaceBool
CategoryTheory.NatTrans.app
Opposite
Finset
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
Finset.partialOrder
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
Profinite.indexFunctor
spanFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
instDiscreteTopologyBool
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
spanFunctorIsoIndexFunctor
CategoryTheory.Functor.obj
CompHausLike.isoOfBijective
CategoryTheory.ConcreteCategory.ofHom
CompHausLike
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
iso_map
Finset.instMembership
Opposite.unop
β€”TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
instDiscreteTopologyBool
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
surjective_projRestricts πŸ“–mathematicalβ€”Set.Elem
Ο€
ProjRestricts
β€”proj_eq_of_subset
Homeomorph.surjective
Set.surjective_mapsTo_image_restrict
term_ord_aux πŸ“–mathematicalβ€”term
ord
β€”isWellOrder_lt
Ordinal.enum_typein
Ο€s'_apply_apply πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
LocallyConstant
Set.Elem
Ο€
Preorder.toLT
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instFunLike
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Ο€s'
ProjRestricts
β€”β€”
Ο€s_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instFunLike
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
Ο€
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Ο€s
ProjRestrict
β€”β€”

Profinite.NobelingProof.GoodProducts

Definitions

NameCategoryTheorems
equiv_range πŸ“–CompOp
1 mathmath: equiv_toFun_eq_eval
eval πŸ“–CompOp
15 mathmath: linearIndependent_iff_union_smaller, injective, equiv_toFun_eq_eval, span_sum, spanFin, span, linearIndependent_iff_smaller, linearIndependent_iff_sum, linearIndependent, square_commutes, linearIndependentEmpty, span_iff_products, sum_equiv_comp_eval_eq_elim, linearIndependent_iff_range, linearIndependentSingleton
range πŸ“–CompOp
6 mathmath: equiv_toFun_eq_eval, range_equiv_factorization, smaller_factorization, range_equiv_smaller_toFun_bijective, linearIndependent_iff_range, union

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_toFun_eq_eval πŸ“–mathematicalβ€”Equiv.toFun
Set.Elem
Profinite.NobelingProof.Products
Profinite.NobelingProof.GoodProducts
LocallyConstant
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
range
equiv_range
Set.rangeFactorization
Profinite.NobelingProof.Products.isGood
eval
β€”β€”
injective πŸ“–mathematicalβ€”Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.isGood
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
eval
β€”Ne.lt_or_gt
Submodule.subset_span
linearIndependent_iff_range πŸ“–mathematicalβ€”LinearIndependent
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.isGood
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
eval
Int.instSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
range
β€”Set.rangeFactorization_eq
equiv_toFun_eq_eval
linearIndependent_equiv
span_iff_products πŸ“–mathematicalβ€”Submodule
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
Int.instSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
Set.range
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.isGood
eval
Profinite.NobelingProof.Products.eval
β€”le_trans
Submodule.span_mono
Submodule.span_le
IsWellFounded.induction
Profinite.NobelingProof.Products.instWellFoundedLT
Submodule.subset_span

Profinite.NobelingProof.Products

Definitions

NameCategoryTheorems
eval πŸ“–CompOp
17 mathmath: span_nil_eq_top, max_eq_eval, eval_Ο€s, eval_Ο€s', Profinite.NobelingProof.GoodProducts.span_sum, eval_eq, evalFacProps, eval_Ο€s_image', Profinite.NobelingProof.GoodProducts.finsuppSum_mem_span_eval, Profinite.NobelingProof.GoodProducts.span_iff_products, Profinite.NobelingProof.GoodProducts.sum_equiv_comp_eval_eq_elim, Profinite.NobelingProof.eval_eq_Ο€J, evalFacProp, evalCons, Profinite.NobelingProof.GoodProducts.max_eq_eval, eval_Ο€s_image, Profinite.NobelingProof.GoodProducts.max_eq_eval_unapply
instLinearOrder πŸ“–CompOp
5 mathmath: eval_Ο€s_image', lt_iff_lex_lt, lt_nil_empty, instWellFoundedLT, eval_Ο€s_image
isGood πŸ“–MathDef
18 mathmath: Profinite.NobelingProof.GoodProducts.linearIndependent_iff_union_smaller, limitOrdinal, Profinite.NobelingProof.GoodProducts.injective, Profinite.NobelingProof.GoodProducts.equiv_toFun_eq_eval, Profinite.NobelingProof.GoodProducts.span_sum, Profinite.NobelingProof.GoodProducts.spanFin, isGood_nil, Profinite.NobelingProof.GoodProducts.span, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_smaller, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_sum, Profinite.NobelingProof.instIsEmptySubtypeProductsIsGoodEmptyCollectionSetForallBool, Profinite.NobelingProof.GoodProducts.linearIndependent, Profinite.NobelingProof.GoodProducts.square_commutes, Profinite.NobelingProof.GoodProducts.linearIndependentEmpty, Profinite.NobelingProof.GoodProducts.span_iff_products, Profinite.NobelingProof.GoodProducts.sum_equiv_comp_eval_eq_elim, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_range, Profinite.NobelingProof.GoodProducts.linearIndependentSingleton

Theorems

NameKindAssumesProvesValidatesDepends On
evalFacProp πŸ“–mathematicalβ€”Set.Elem
Profinite.NobelingProof.Ο€
DFunLike.coe
LocallyConstant
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instFunLike
eval
Profinite.NobelingProof.ProjRestrict
β€”eval_eq
evalFacProps πŸ“–mathematicalβ€”Set.Elem
Profinite.NobelingProof.Ο€
DFunLike.coe
LocallyConstant
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instFunLike
eval
Profinite.NobelingProof.ProjRestricts
β€”Profinite.NobelingProof.proj_eq_of_subset
eval_eq
Profinite.NobelingProof.ProjRestricts.eq_1
Function.comp_assoc
evalFacProp
eval_eq πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instFunLike
eval
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”eval.eq_1
map_list_prod
MonoidHom.instMonoidHomClass
List.prod_eq_one
Int.instNontrivial
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Mathlib.Tactic.Push.not_forall_eq
eval_Ο€s πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Profinite.NobelingProof.ord
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant
Set.Elem
Profinite.NobelingProof.Ο€
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Profinite.NobelingProof.Ο€s
eval
β€”evalFacProp
eval_Ο€s' πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Preorder.toLT
Profinite.NobelingProof.ord
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant
Set.Elem
Profinite.NobelingProof.Ο€
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Profinite.NobelingProof.Ο€s'
eval
β€”LocallyConstant.toFun_eq_coe
evalFacProps
lt_of_lt_of_le
eval_Ο€s_image πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Profinite.NobelingProof.ord
Set.image
Profinite.NobelingProof.Products
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
eval
setOf
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Profinite.NobelingProof.Ο€
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Profinite.NobelingProof.Ο€s
β€”Set.ext
eval_Ο€s
lt_ord_of_lt
eval_Ο€s_image' πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Preorder.toLT
Profinite.NobelingProof.ord
Set.image
Profinite.NobelingProof.Products
LocallyConstant
Set.Elem
Profinite.NobelingProof.Ο€
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
eval
setOf
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Profinite.NobelingProof.Ο€s'
β€”Set.ext
eval_Ο€s'
lt_ord_of_lt
head!_le_of_lt πŸ“–mathematicalProfinite.NobelingProof.Products
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Preorder.toLEβ€”List.head!_le_of_lt
head_lt_ord_of_isGood πŸ“–mathematicalisGood
Profinite.NobelingProof.Ο€
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”prop_of_isGood
List.head!_mem_self
instWellFoundedLT πŸ“–mathematicalβ€”WellFoundedLT
Profinite.NobelingProof.Products
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”lt_iff_lex_lt
WellFoundedLT.eq_1
instIsWellFoundedChainsLex_chains
isGood_mono πŸ“–β€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
isGood
Profinite.NobelingProof.Ο€
Preorder.toLT
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
β€”β€”Submodule.apply_mem_span_image_iff_mem_span
RingHomSurjective.ids
Profinite.NobelingProof.injective_Ο€s'
eval_Ο€s'
prop_of_isGood
eval_Ο€s_image'
lt_iff_lex_lt πŸ“–mathematicalβ€”Profinite.NobelingProof.Products
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”β€”
lt_ord_of_lt πŸ“–β€”Profinite.NobelingProof.Products
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Ordinal
Ordinal.partialOrder
Profinite.NobelingProof.ord
β€”β€”List.SortedGT.lt_ord_of_lt
List.IsChain.sortedGT
prop_of_isGood πŸ“–β€”isGood
Profinite.NobelingProof.Ο€
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”LocallyConstant.ext
eval_eq
LocallyConstant.zero_apply
Submodule.zero_mem
prop_of_isGood_of_contained πŸ“–mathematicalisGood
Profinite.NobelingProof.contained
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Ordinal
Ordinal.partialOrder
Profinite.NobelingProof.ord
β€”LocallyConstant.ext
eval_eq
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Subtype.prop
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
rel_head!_of_mem πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLEβ€”List.Pairwise.head!_le
instReflGe
List.SortedGE.pairwise
List.SortedGT.sortedGE
List.IsChain.sortedGT

---

← Back to Index