Documentation Verification Report

Induction

📁 Source: Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean

Statistics

MetricCount
Definitionsι
1
TheoremsfreeOfProfinite, isClosedEmbedding, P0, Plimit, linearIndependent, linearIndependentAux, Nobeling_aux
7
Total8

LocallyConstant

Theorems

NameKindAssumesProvesValidatesDepends On
freeOfProfinite 📖mathematicalModule.Free
LocallyConstant
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
Int.instSemiring
instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
instAddCommGroup
Int.instAddCommGroup
exists_wellOrder
Profinite.NobelingProof.Nobeling_aux
Profinite.Nobeling.isClosedEmbedding

Profinite.Nobeling

Definitions

NameCategoryTheorems
ι 📖CompOp
1 mathmath: isClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isClosedEmbedding 📖mathematicalTopology.IsClosedEmbedding
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
Pi.topologicalSpace
Set
IsClopen
instTopologicalSpaceBool
ι
Continuous.isClosedEmbedding
CompHausLike.is_compact
Pi.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
instDiscreteTopologyBool
continuous_pi
IsLocallyConstant.iff_continuous
List.TFAE.out
IsLocallyConstant.tfae
IsClopen.isOpen
isClopen_compl_iff
Set.ext
exists_isClopen_of_totally_separated
instTotallySeparatedSpaceOfTotallyDisconnectedSpace
WeaklyLocallyCompactSpace.locallyCompactSpace
T2Space.r1Space
CompHausLike.is_hausdorff
instWeaklyLocallyCompactSpaceOfCompactSpace
Profinite.instTotallyDisconnectedSpaceCarrierToTop

Profinite.NobelingProof

Theorems

NameKindAssumesProvesValidatesDepends On
Nobeling_aux 📖mathematicalTopology.IsClosedEmbedding
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
Pi.topologicalSpace
instTopologicalSpaceBool
Module.Free
LocallyConstant
Int.instSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
Module.Free.of_equiv'
Module.Free.of_basis
Topology.IsClosedEmbedding.isClosed_range
RingHomInvPair.ids
Topology.IsClosedEmbedding.isEmbedding

Profinite.NobelingProof.GoodProducts

Theorems

NameKindAssumesProvesValidatesDepends On
P0 📖mathematicalProfinite.NobelingProof.P
Ordinal
Ordinal.zero
isWellOrder_lt
not_lt_zero
Ordinal.canonicallyOrderedAdd
Set.subset_singleton_iff_eq
linearIndependentEmpty
linearIndependentSingleton
Plimit 📖Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Profinite.NobelingProof.P
isWellOrder_lt
linearIndependent_iff_union_smaller
linearIndependent_subtype_iff
linearIndepOn_iUnion_of_directed
Monotone.directed_le
SemilatticeSup.instIsDirectedOrder
smaller_mono
linearIndependent_iff_smaller
LE.le.trans
LT.lt.le
Profinite.NobelingProof.isClosed_proj
Profinite.NobelingProof.contained_proj
linearIndependent 📖mathematicalLinearIndependent
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.isGood
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
eval
Int.instSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
linearIndependentAux
isWellOrder_lt
le_refl
Ordinal.typein_lt_type
linearIndependentAux 📖mathematicalProfinite.NobelingProof.PP0
isWellOrder_lt
lt_of_lt_of_le
Order.lt_succ
Ordinal.instNoMaxOrder
linearIndependent_iff_sum
ModuleCat.linearIndependent_leftExact
Profinite.NobelingProof.succ_exact
le_of_lt
Profinite.NobelingProof.isClosed_proj
Profinite.NobelingProof.contained_proj
linearIndependent_comp_of_eval
span
Profinite.NobelingProof.isClosed_C'
Profinite.NobelingProof.contained_C'
Profinite.NobelingProof.succ_mono
square_commutes
Plimit

---

← Back to Index