Documentation Verification Report

Successor

πŸ“ Source: Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean

Statistics

MetricCount
DefinitionsC', C0, C1, CC'β‚€, CC'₁, MaxProducts, MaxToGood, SumEval, sum_equiv, sum_to, Linear_CC', Linear_CC'β‚€, Linear_CC'₁, Tail, SwapTrue
15
TheoremsC0_projOrd, C1_projOrd, CC_comp_zero, CC_exact, chain'_cons_of_lt, good_lt_maxProducts, head!_eq_o_of_maxProducts, injective_sum_to, isChain_cons_of_lt, linearIndependent_comp_of_eval, linearIndependent_iff_sum, maxTail_isGood, maxToGood_injective, max_eq_eval, max_eq_eval_unapply, max_eq_o_cons_tail, span_sum, square_commutes, sum_equiv_comp_eval_eq_elim, sum_to_range, union_succ, evalCons, max_eq_eval, max_eq_o_cons_tail, max_eq_o_cons_tail', contained_C', contained_C1, continuous_CC'β‚€, continuous_CC'₁, continuous_swapTrue, isClosed_C', isClosed_C0, isClosed_C1, mem_C'_eq_false, succ_exact, succ_mono, swapTrue_eq_true, swapTrue_mem_C1, union_C0C1_eq
39
Total54

Profinite.NobelingProof

Definitions

NameCategoryTheorems
C' πŸ“–CompOp
11 mathmath: Products.max_eq_eval, succ_exact, continuous_CC'₁, GoodProducts.maxToGood_injective, GoodProducts.maxTail_isGood, isClosed_C', contained_C', CC_comp_zero, continuous_CC'β‚€, GoodProducts.max_eq_eval, GoodProducts.max_eq_eval_unapply
C0 πŸ“–CompOp
2 mathmath: isClosed_C0, union_C0C1_eq
C1 πŸ“–CompOp
4 mathmath: union_C0C1_eq, contained_C1, swapTrue_mem_C1, isClosed_C1
CC'β‚€ πŸ“–CompOp
1 mathmath: continuous_CC'β‚€
CC'₁ πŸ“–CompOp
1 mathmath: continuous_CC'₁
Linear_CC' πŸ“–CompOp
6 mathmath: Products.max_eq_eval, GoodProducts.linearIndependent_comp_of_eval, succ_exact, CC_comp_zero, GoodProducts.max_eq_eval, GoodProducts.max_eq_eval_unapply
Linear_CC'β‚€ πŸ“–CompOpβ€”
Linear_CC'₁ πŸ“–CompOpβ€”
SwapTrue πŸ“–CompOp
3 math, 1 bridgemath: continuous_swapTrue, C1_projOrd, swapTrue_mem_C1
bridge: swapTrue_eq_true

Theorems

NameKindAssumesProvesValidatesDepends On
C0_projOrd πŸ“–mathematicalcontained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set
Set.instMembership
C0
Proj
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
β€”isWellOrder_lt
LE.le.lt_or_eq
Ordinal.instNoMaxOrder
not_imp_not
ord_term
C1_projOrd πŸ“–mathematicalcontained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set
Set.instMembership
C1
SwapTrue
Proj
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
β€”isWellOrder_lt
ord_term
lt_of_le_of_ne
Ordinal.instNoMaxOrder
not_imp_not
CC_comp_zero πŸ“–mathematicalcontained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
C'
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Linear_CC'
Ο€
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
Ο€s
LocallyConstant.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
β€”isWellOrder_lt
LocallyConstant.ext
if_ctx_congr
LT.lt.ne
CC_exact πŸ“–mathematicalcontained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
C'
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Linear_CC'
LocallyConstant.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
Ο€
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
Ο€s
β€”isWellOrder_lt
Subtype.prop
continuous_induced_dom
swapTrue_mem_C1
Continuous.comp
continuous_swapTrue
continuous_subtype_val
C0_projOrd
union_C0C1_eq
isClosed_C0
isClosed_proj
isClosed_C1
continuous_CC'₁
continuous_CC'β‚€
LocallyConstant.ext
LocallyConstant.piecewise'_apply_left
LocallyConstant.piecewise'_apply_right
C1_projOrd
contained_C' πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
contained
C'
β€”isWellOrder_lt
contained_C1
contained_C1 πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
contained
Ο€
C1
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
β€”isWellOrder_lt
contained_proj
continuous_CC'β‚€ πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Continuous
Set.Elem
C'
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
CC'β‚€
β€”isWellOrder_lt
continuous_subtype_val
continuous_CC'₁ πŸ“–mathematicalcontained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Continuous
Set.Elem
C'
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
CC'₁
β€”isWellOrder_lt
Continuous.comp
continuous_swapTrue
continuous_subtype_val
continuous_swapTrue πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
instTopologicalSpaceBool
SwapTrue
β€”continuous_pi
Continuous.comp'
continuous_bot
continuous_apply
isClosed_C' πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
IsClosed
Pi.topologicalSpace
instTopologicalSpaceBool
C'
β€”isWellOrder_lt
IsClosed.inter
isClosed_C0
isClosed_proj
isClosed_C1
isClosed_C0 πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
IsClosed
Pi.topologicalSpace
instTopologicalSpaceBool
C0
β€”isWellOrder_lt
IsClosed.inter
continuous_apply
IsClosed.preimage
isClosed_discrete
instDiscreteTopologyBool
isClosed_C1 πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
IsClosed
Pi.topologicalSpace
instTopologicalSpaceBool
C1
β€”isWellOrder_lt
IsClosed.inter
continuous_apply
IsClosed.preimage
isClosed_discrete
instDiscreteTopologyBool
mem_C'_eq_false πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set
Set.instMembership
C'
termβ€”isWellOrder_lt
ord_term_aux
succ_exact πŸ“–mathematicalcontained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
CategoryTheory.ShortComplex.Exact
ModuleCat
Int.instRing
ModuleCat.moduleCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ModuleCat.of
LocallyConstant
Set.Elem
Ο€
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
AddCommGroup.toIntModule
C'
ModuleCat.ofHom
Ο€s
Linear_CC'
β€”isWellOrder_lt
CategoryTheory.ShortComplex.moduleCat_exact_iff
CC_exact
succ_mono πŸ“–mathematicalβ€”CategoryTheory.Mono
ModuleCat
Int.instRing
ModuleCat.moduleCategory
ModuleCat.of
LocallyConstant
Set.Elem
Ο€
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
AddCommGroup.toIntModule
ModuleCat.ofHom
Ο€s
β€”ModuleCat.mono_iff_injective
injective_Ο€s
swapTrue_eq_true πŸ“–bridging (complete)Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
SwapTrue
term
SwapTrueisWellOrder_lt
ord_term_aux
swapTrue_mem_C1 πŸ“–mathematicalcontained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set
Set.instMembership
C1
SwapTrue
Ο€
ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
β€”isWellOrder_lt
ord_term
Mathlib.Tactic.Contrapose.contrapose₃
Order.succ_le_of_lt
LE.le.lt_of_ne'
union_C0C1_eq πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set
Set.instUnion
C0
C1
β€”isWellOrder_lt
Set.ext
Bool.dichotomy

Profinite.NobelingProof.GoodProducts

Definitions

NameCategoryTheorems
MaxProducts πŸ“–CompOp
15 mathmath: sum_to_range, linearIndependent_comp_of_eval, span_sum, injective_sum_to, good_lt_maxProducts, union_succ, linearIndependent_iff_sum, square_commutes, maxToGood_injective, maxTail_isGood, max_eq_o_cons_tail, sum_equiv_comp_eval_eq_elim, max_eq_eval, head!_eq_o_of_maxProducts, max_eq_eval_unapply
MaxToGood πŸ“–CompOp
1 mathmath: maxToGood_injective
SumEval πŸ“–CompOp
3 mathmath: linearIndependent_comp_of_eval, linearIndependent_iff_sum, square_commutes
sum_equiv πŸ“–CompOp
1 mathmath: sum_equiv_comp_eval_eq_elim
sum_to πŸ“–CompOp
2 mathmath: sum_to_range, injective_sum_to

Theorems

NameKindAssumesProvesValidatesDepends On
chain'_cons_of_lt πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.instLinearOrder
Profinite.NobelingProof.Products.Tail
Set
Set.instMembership
MaxProducts
Profinite.NobelingProof.termβ€”isChain_cons_of_lt
good_lt_maxProducts πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Profinite.NobelingProof.Products
Set
Set.instMembership
Profinite.NobelingProof.GoodProducts
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
MaxProducts
β€”isWellOrder_lt
max_eq_o_cons_tail
List.cons_head!_tail
Ordinal.typein_lt_typein
Ordinal.typein_enum
Profinite.NobelingProof.Products.prop_of_isGood
Subtype.prop
List.head!_mem_self
head!_eq_o_of_maxProducts πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Profinite.NobelingProof.Products
Set
Set.instMembership
MaxProducts
Profinite.NobelingProof.term
β€”isWellOrder_lt
Profinite.NobelingProof.ord_term
Subtype.prop
Profinite.NobelingProof.Products.prop_of_isGood_of_contained
List.head!_mem_self
eq_of_le_of_not_lt
Ordinal.instNoMaxOrder
not_lt
Profinite.NobelingProof.Products.rel_head!_of_mem
Profinite.NobelingProof.ord_term_aux
injective_sum_to πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set.Elem
Profinite.NobelingProof.Products
Profinite.NobelingProof.GoodProducts
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
MaxProducts
sum_to
β€”isWellOrder_lt
Function.Injective.sumElim
Subtype.val_injective
Profinite.NobelingProof.Products.prop_of_isGood
Profinite.NobelingProof.ord_term_aux
isChain_cons_of_lt πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.instLinearOrder
Profinite.NobelingProof.Products.Tail
Set
Set.instMembership
MaxProducts
Profinite.NobelingProof.termβ€”isWellOrder_lt
lt_of_le_of_lt
Profinite.NobelingProof.Products.rel_head!_of_mem
Profinite.NobelingProof.Products.head!_le_of_lt
Profinite.NobelingProof.Products.lt_iff_lex_lt
Subtype.prop
max_eq_o_cons_tail
List.head!_mem_self
linearIndependent_comp_of_eval πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Submodule
LocallyConstant
Set.Elem
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
Int.instSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
Preorder.toLE
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
Set.range
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.isGood
eval
LinearIndependent
Profinite.NobelingProof.C'
MaxProducts
ModuleCat.carrier
Int.instRing
ModuleCat.of
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
ModuleCat.ofHom
Profinite.NobelingProof.Linear_CC'
Profinite.NobelingProof.GoodProducts
SumEval
β€”isWellOrder_lt
max_eq_eval_unapply
maxToGood_injective
LinearIndependent.comp
linearIndependent_iff_sum πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
LinearIndependent
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.isGood
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
eval
Int.instSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
Profinite.NobelingProof.GoodProducts
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
MaxProducts
SumEval
β€”isWellOrder_lt
linearIndependent_equiv
SumEval.eq_1
sum_equiv_comp_eval_eq_elim
maxTail_isGood πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Submodule
LocallyConstant
Set.Elem
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
Int.instSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
Preorder.toLE
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
Set.range
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.isGood
eval
Profinite.NobelingProof.C'
Profinite.NobelingProof.Products.Tail
MaxProducts
β€”isWellOrder_lt
max_eq_eval
Finsupp.mem_span_image_iff_linearCombination
Finsupp.linearCombination_apply
map_finsuppSum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finsupp.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Finsupp.mem_supported
isChain_cons_of_lt
Subtype.coe_eta
Profinite.NobelingProof.Products.max_eq_eval
Profinite.NobelingProof.Products.max_eq_o_cons_tail
Profinite.NobelingProof.succ_exact
RingHomSurjective.ids
CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker
LinearMap.sub_mem_ker_iff
Submodule.mem_top
Finsupp.mem_span_range_iff_exists_finsupp
Subtype.prop
eq_sub_iff_add_eq
Submodule.add_mem
Submodule.finsuppSum_mem
Submodule.smul_mem
Submodule.subset_span
Profinite.NobelingProof.Products.eval_Ο€s
Profinite.NobelingProof.Products.prop_of_isGood
good_lt_maxProducts
Finsupp.mem_support_iff
max_eq_o_cons_tail
Profinite.NobelingProof.Products.lt_iff_lex_lt
maxToGood_injective πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Submodule
LocallyConstant
Set.Elem
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
Int.instSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
Preorder.toLE
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
Set.range
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.isGood
eval
MaxProducts
Profinite.NobelingProof.GoodProducts
Profinite.NobelingProof.C'
MaxToGood
β€”isWellOrder_lt
max_eq_o_cons_tail
max_eq_eval πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
Profinite.NobelingProof.C'
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Profinite.NobelingProof.Linear_CC'
Profinite.NobelingProof.Products.eval
Profinite.NobelingProof.Products
MaxProducts
Profinite.NobelingProof.Products.Tail
β€”isWellOrder_lt
Profinite.NobelingProof.Products.max_eq_eval
Subtype.prop
head!_eq_o_of_maxProducts
max_eq_eval_unapply πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set.Elem
Profinite.NobelingProof.Products
MaxProducts
LocallyConstant
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
Profinite.NobelingProof.C'
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Profinite.NobelingProof.Linear_CC'
Profinite.NobelingProof.Products.eval
Profinite.NobelingProof.Products.Tail
β€”isWellOrder_lt
max_eq_eval
max_eq_o_cons_tail πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Profinite.NobelingProof.Products
Set
Set.instMembership
MaxProducts
Profinite.NobelingProof.term
Profinite.NobelingProof.Products.Tail
β€”isWellOrder_lt
Profinite.NobelingProof.Products.max_eq_o_cons_tail
Subtype.prop
head!_eq_o_of_maxProducts
span_sum πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set.range
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
Profinite.NobelingProof.Products
Profinite.NobelingProof.Products.isGood
eval
Profinite.NobelingProof.GoodProducts
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
MaxProducts
Profinite.NobelingProof.Products.eval
β€”isWellOrder_lt
sum_equiv_comp_eval_eq_elim
Equiv.toFun_as_coe
EquivLike.range_comp
square_commutes πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set.Elem
Profinite.NobelingProof.Products
Profinite.NobelingProof.GoodProducts
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
MaxProducts
LocallyConstant
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
SumEval
Profinite.NobelingProof.Products.isGood
ModuleCat.carrier
Int.instRing
ModuleCat.of
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
AddCommGroup.toIntModule
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
ModuleCat.ofHom
Profinite.NobelingProof.Ο€s
eval
β€”isWellOrder_lt
LocallyConstant.ext
Profinite.NobelingProof.Products.eval_Ο€s
Profinite.NobelingProof.Products.prop_of_isGood
Subtype.prop
sum_equiv_comp_eval_eq_elim πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set.Elem
Profinite.NobelingProof.Products
Profinite.NobelingProof.GoodProducts
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
MaxProducts
Profinite.NobelingProof.Products.isGood
LocallyConstant
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
eval
Equiv.toFun
sum_equiv
Profinite.NobelingProof.Products.eval
β€”isWellOrder_lt
LocallyConstant.ext
sum_to_range πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Set.range
Profinite.NobelingProof.Products
Set.Elem
Profinite.NobelingProof.GoodProducts
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
MaxProducts
sum_to
Set
Set.instUnion
β€”isWellOrder_lt
Set.Sum.elim_range
Subtype.range_coe_subtype
union_succ πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Profinite.NobelingProof.GoodProducts
Set
Profinite.NobelingProof.Products
Set.instUnion
Profinite.NobelingProof.Ο€
Profinite.NobelingProof.ord
LinearOrder.toDecidableLT
Ordinal.instLinearOrder
MaxProducts
β€”isWellOrder_lt
Set.ext
Profinite.NobelingProof.Products.prop_of_isGood_of_contained
LE.le.lt_of_ne
Ordinal.instNoMaxOrder
Profinite.NobelingProof.ord_term
Profinite.NobelingProof.Products.eval_Ο€s_image
Profinite.NobelingProof.Products.eval_Ο€s
Submodule.apply_mem_span_image_iff_mem_span
RingHomSurjective.ids
Profinite.NobelingProof.injective_Ο€s
Profinite.NobelingProof.Products.isGood_mono
LT.lt.le
Order.lt_succ
Profinite.NobelingProof.contained_eq_proj

Profinite.NobelingProof.Products

Definitions

NameCategoryTheorems
Tail πŸ“–CompOp
6 mathmath: max_eq_eval, Profinite.NobelingProof.GoodProducts.maxTail_isGood, Profinite.NobelingProof.GoodProducts.max_eq_o_cons_tail, max_eq_o_cons_tail, Profinite.NobelingProof.GoodProducts.max_eq_eval, Profinite.NobelingProof.GoodProducts.max_eq_eval_unapply

Theorems

NameKindAssumesProvesValidatesDepends On
evalCons πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
eval
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
LocallyConstant.instMul
Profinite.NobelingProof.e
List.IsChain.sublist
instTransGT
β€”β€”
max_eq_eval πŸ“–mathematicalProfinite.NobelingProof.contained
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Preorder.toLT
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Profinite.NobelingProof.term
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceBool
Profinite.NobelingProof.C'
LocallyConstant.instAddCommMonoid
Int.instAddCommMonoid
AddCommGroup.toIntModule
LocallyConstant.instAddCommGroup
Int.instAddCommGroup
LinearMap.instFunLike
Profinite.NobelingProof.Linear_CC'
eval
Tail
β€”isWellOrder_lt
max_eq_o_cons_tail
Subtype.prop
max_eq_o_cons_tail'
List.IsChain.sublist
evalCons
LocallyConstant.ext
Profinite.NobelingProof.continuous_CC'₁
Profinite.NobelingProof.continuous_CC'β‚€
Subtype.coe_eta
Profinite.NobelingProof.CC'₁.eq_1
Profinite.NobelingProof.CC'β‚€.eq_1
eval_eq
mul_ite
mul_one
MulZeroClass.mul_zero
Profinite.NobelingProof.ord_term
LT.lt.ne
List.IsChain.rel_cons
Profinite.NobelingProof.swapTrue_eq_true
Profinite.NobelingProof.mem_C'_eq_false
Mathlib.Tactic.Push.not_forall_eq
max_eq_o_cons_tail πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Profinite.NobelingProof.term
Tailβ€”isWellOrder_lt
List.cons_head!_tail
max_eq_o_cons_tail' πŸ“–β€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isWellOrder_lt
Profinite.NobelingProof.term
Tail
β€”β€”isWellOrder_lt
max_eq_o_cons_tail
Subtype.coe_eta

---

← Back to Index