Documentation Verification Report

Product

📁 Source: Mathlib/Topology/Category/Profinite/Product.lean

Statistics

MetricCount
Definitionsmap, obj, π_app, asLimitindexConeIso, indexCone, indexCone_isLimit, indexFunctor, isoindexConeLift
8
Theoremseq_of_forall_π_app_eq, map_comp_π_app, surjective_π_app, isIso_indexCone_lift
4
Total12

Profinite

Definitions

NameCategoryTheorems
asLimitindexConeIso 📖CompOp
indexCone 📖CompOp
1 mathmath: isIso_indexCone_lift
indexCone_isLimit 📖CompOp
indexFunctor 📖CompOp
3 mathmath: NobelingProof.spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe, isIso_indexCone_lift, NobelingProof.spanFunctorIsoIndexFunctor_inv_app
isoindexConeLift 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_indexCone_lift 📖mathematicalT2Space
TotallyDisconnectedSpace
IsCompact
Pi.topologicalSpace
CategoryTheory.IsIso
Profinite
CompHausLike.category
TopCat.carrier
TopCat.str
CategoryTheory.Limits.Cone.pt
Opposite
Finset
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
Finset.partialOrder
indexFunctor
indexCone
limitCone
CategoryTheory.Limits.IsLimit.lift
limitConeIsLimit
CompHausLike.isIso_of_bijective
IndexFunctor.eq_of_forall_π_app_eq
IsClosed.preimage
ContinuousMap.continuous
T1Space.t1
Subtype.t1Space
instT1SpaceForall
T2Space.t1Space
IndexFunctor.map_comp_π_app
Subtype.prop
IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
directed_of_isDirected_le
Finset.isDirected_le
Set.Nonempty.preimage
Set.singleton_nonempty
IndexFunctor.surjective_π_app
IsClosed.isCompact
isCompact_iff_compactSpace
Set.mem_iInter

Profinite.IndexFunctor

Definitions

NameCategoryTheorems
map 📖CompOp
1 mathmath: map_comp_π_app
obj 📖CompOp
4 mathmath: Profinite.NobelingProof.spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe, surjective_π_app, Profinite.NobelingProof.iso_map_bijective, map_comp_π_app
π_app 📖CompOp
2 mathmath: surjective_π_app, map_comp_π_app

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_forall_π_app_eq 📖DFunLike.coe
ContinuousMap
Set.Elem
obj
Finset
Finset.instMembership
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
ContinuousMap.instFunLike
π_app
Finset.mem_singleton
map_comp_π_app 📖mathematicalSet.Elem
obj
DFunLike.coe
ContinuousMap
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
ContinuousMap.instFunLike
map
π_app
surjective_π_app 📖mathematicalSet.Elem
obj
DFunLike.coe
ContinuousMap
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
ContinuousMap.instFunLike
π_app
Subtype.prop

---

← Back to Index