Documentation Verification Report

Basic

📁 Source: Mathlib/Topology/Category/Stonean/Basic.lean

Statistics

MetricCount
Definitionspresentation, π, toStonean, presentation, π, Stonean, compHaus, fullyFaithfulToCompHaus, mkFinite, of, toCompHaus, toProfinite
12
TheoremsGleason, instExtremallyDisconnectedCarrierToTopTrueOfProjective, lift_lifts, lift_lifts_assoc, epi_π, toStonean_toTop, lift_lifts, lift_lifts_assoc, epi_π, projective_of_extrDisc, epi_iff_surjective, instExtremallyDisconnectedCarrierToTop, instHasPropExtremallyDisconnectedCarrier, instProjective, instProjectiveCompHausCompHaus, instProjectiveProfiniteObjToProfinite
16
Total28

CompHaus

Definitions

NameCategoryTheorems
presentation 📖CompOp
1 mathmath: presentation.epi_π
toStonean 📖CompOp
1 mathmath: toStonean_toTop

Theorems

NameKindAssumesProvesValidatesDepends On
Gleason 📖mathematicalCategoryTheory.Projective
CompHaus
CompHausLike.category
ExtremallyDisconnected
TopCat.carrier
CompHausLike.toTop
TopCat.str
Stonean.instExtremallyDisconnectedCarrierToTop
instCompactSpaceCarrierToTopTrue
instT2SpaceCarrierToTopTrue
Stonean.instProjectiveCompHausCompHaus
instExtremallyDisconnectedCarrierToTopTrueOfProjective 📖mathematicalExtremallyDisconnected
TopCat.carrier
CompHausLike.toTop
TopCat.str
CompactT2.Projective.extremallyDisconnected
instCompactSpaceCarrierToTopTrue
instT2SpaceCarrierToTopTrue
CompHausLike.is_compact
CompHausLike.is_hausdorff
instHasPropTrue
epi_iff_surjective
CategoryTheory.Projective.factors
ContinuousMap.continuous_toFun
lift_lifts 📖mathematicalCategoryTheory.CategoryStruct.comp
CompHaus
CategoryTheory.Category.toCategoryStruct
CompHausLike.category
Stonean.compHaus
lift
CategoryTheory.Projective.factorThru_comp
Stonean.instProjectiveCompHausCompHaus
lift_lifts_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CompHaus
CategoryTheory.Category.toCategoryStruct
CompHausLike.category
Stonean.compHaus
lift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_lifts
toStonean_toTop 📖mathematicalCompHausLike.toTop
ExtremallyDisconnected
TopCat.carrier
TopCat.str
toStonean

CompHaus.presentation

Definitions

NameCategoryTheorems
π 📖CompOp
1 mathmath: epi_π

Theorems

NameKindAssumesProvesValidatesDepends On
epi_π 📖mathematicalCategoryTheory.Epi
CompHaus
CompHausLike.category
CategoryTheory.Functor.obj
Stonean
ExtremallyDisconnected
TopCat.carrier
TopCat.str
Stonean.toCompHaus
CompHaus.presentation
π
CategoryTheory.ProjectivePresentation.epi

Profinite

Definitions

NameCategoryTheorems
presentation 📖CompOp
1 mathmath: presentation.epi_π

Theorems

NameKindAssumesProvesValidatesDepends On
lift_lifts 📖mathematicalCategoryTheory.CategoryStruct.comp
Profinite
CategoryTheory.Category.toCategoryStruct
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
Stonean
ExtremallyDisconnected
Stonean.toProfinite
lift
CategoryTheory.Projective.factorThru_comp
Stonean.instProjectiveProfiniteObjToProfinite
lift_lifts_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Profinite
CategoryTheory.Category.toCategoryStruct
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
Stonean
ExtremallyDisconnected
Stonean.toProfinite
lift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_lifts
projective_of_extrDisc 📖mathematicalCategoryTheory.Projective
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CompHausLike.is_compact
CompHausLike.is_hausdorff
Stonean.instProjectiveProfiniteObjToProfinite

Profinite.presentation

Definitions

NameCategoryTheorems
π 📖CompOp
1 mathmath: epi_π

Theorems

NameKindAssumesProvesValidatesDepends On
epi_π 📖mathematicalCategoryTheory.Epi
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
Stonean
ExtremallyDisconnected
Stonean.toProfinite
Profinite.presentation
π
CategoryTheory.ProjectivePresentation.epi
Profinite.epi_iff_surjective
CompHaus.epi_iff_surjective

Stonean

Definitions

NameCategoryTheorems
compHaus 📖CompOp
5 mathmath: Condensed.epi_iff_surjective_on_stonean, CompHaus.lift_lifts, CondensedMod.epi_iff_surjective_on_stonean, CondensedSet.epi_iff_surjective_on_stonean, CompHaus.lift_lifts_assoc
fullyFaithfulToCompHaus 📖CompOp
mkFinite 📖CompOp
of 📖CompOp
toCompHaus 📖CompOp
5 mathmath: instEffectivelyEnoughCompHausToCompHaus, CompHaus.presentation.epi_π, instReflectsEffectiveEpisCompHausToCompHaus, instProjectiveCompHausCompHaus, instPreservesEffectiveEpisCompHausToCompHaus
toProfinite 📖CompOp
7 mathmath: Profinite.lift_lifts_assoc, Profinite.lift_lifts, Condensed.StoneanProfinite.instPreservesEffectiveEpisStoneanProfiniteToProfinite, Condensed.StoneanProfinite.instEffectivelyEnoughStoneanProfiniteToProfinite, Condensed.StoneanProfinite.instReflectsEffectiveEpisStoneanProfiniteToProfinite, instProjectiveProfiniteObjToProfinite, Profinite.presentation.epi_π

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_surjective 📖mathematicalCategoryTheory.Epi
Stonean
CompHausLike.category
ExtremallyDisconnected
TopCat.carrier
TopCat.str
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
CompHausLike.toTop
ContinuousMap.instFunLike
CompHausLike.concreteCategory
IsCompact.isClosed
CompHausLike.is_hausdorff
isCompact_range
CompHausLike.is_compact
ContinuousMap.continuous
IsClosed.compl_mem_nhds
TopologicalSpace.IsTopologicalBasis.mem_nhds_iff
isTopologicalBasis_isClopen
TotallySeparatedSpace.totallyDisconnectedSpace
instTotallySeparatedSpaceOfExtremallyDisconnectedOfT2Space
instExtremallyDisconnectedCarrierToTop
instFiniteULift
Finite.of_fintype
instDiscreteTopologyULift
instDiscreteTopologyFin
LocallyConstant.continuous
continuous_const
CategoryTheory.cancel_epi
CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext
ULift.ext
one_ne_zero
Fin.instNeZeroHAddNatOfNat_mathlib_1
CategoryTheory.ConcreteCategory.epi_of_surjective
instExtremallyDisconnectedCarrierToTop 📖mathematicalExtremallyDisconnected
TopCat.carrier
CompHausLike.toTop
TopCat.str
CompHausLike.prop
instHasPropExtremallyDisconnectedCarrier 📖mathematicalCompHausLike.HasProp
ExtremallyDisconnected
TopCat.carrier
TopCat.str
instProjective 📖mathematicalCategoryTheory.Projective
Stonean
CompHausLike.category
ExtremallyDisconnected
TopCat.carrier
TopCat.str
epi_iff_surjective
CompactT2.ExtremallyDisconnected.projective
CompHausLike.prop
CompHausLike.is_compact
CompHausLike.is_hausdorff
ContinuousMap.continuous
instHasPropExtremallyDisconnectedCarrier
instExtremallyDisconnectedCarrierToTop
CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext
instProjectiveCompHausCompHaus 📖mathematicalCategoryTheory.Projective
CompHaus
CompHausLike.category
CategoryTheory.Functor.obj
Stonean
ExtremallyDisconnected
TopCat.carrier
TopCat.str
toCompHaus
CompHaus.epi_iff_surjective
CompactT2.ExtremallyDisconnected.projective
CompHausLike.prop
CompHaus.instCompactSpaceCarrierToTopTrue
CompHaus.instT2SpaceCarrierToTopTrue
ContinuousMap.continuous
CompHausLike.is_compact
CompHausLike.is_hausdorff
CompHaus.instHasPropTrue
CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext
instProjectiveProfiniteObjToProfinite 📖mathematicalCategoryTheory.Projective
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
Stonean
ExtremallyDisconnected
toProfinite
Profinite.epi_iff_surjective
CompactT2.ExtremallyDisconnected.projective
CompHausLike.prop
CompHausLike.is_compact
CompHausLike.is_hausdorff
ContinuousMap.continuous
Profinite.instHasPropTotallyDisconnectedSpaceCarrier
TotallySeparatedSpace.totallyDisconnectedSpace
instTotallySeparatedSpaceOfExtremallyDisconnectedOfT2Space
instExtremallyDisconnectedCarrierToTop
Profinite.instTotallyDisconnectedSpaceCarrierToTop
CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext

(root)

Definitions

NameCategoryTheorems
Stonean 📖CompOp
19 mathmath: Stonean.instProjective, Stonean.instEffectivelyEnoughCompHausToCompHaus, Stonean.effectiveEpiFamily_tfae, Stonean.epi_iff_surjective, Stonean.instPreregular, Stonean.forget.preservesLimits, Profinite.lift_lifts_assoc, Profinite.lift_lifts, Condensed.StoneanProfinite.instPreservesEffectiveEpisStoneanProfiniteToProfinite, Condensed.StoneanProfinite.instEffectivelyEnoughStoneanProfiniteToProfinite, CompHaus.presentation.epi_π, Condensed.instPreservesFiniteProductsOppositeStoneanVal, Condensed.StoneanProfinite.instReflectsEffectiveEpisStoneanProfiniteToProfinite, Stonean.instReflectsEffectiveEpisCompHausToCompHaus, Stonean.instProjectiveCompHausCompHaus, Stonean.instProjectiveProfiniteObjToProfinite, Profinite.presentation.epi_π, Stonean.instPreservesEffectiveEpisCompHausToCompHaus, Stonean.effectiveEpi_tfae

---

← Back to Index