Documentation Verification Report

GrothendieckTopology

πŸ“ Source: Mathlib/Topology/Category/TopCat/GrothendieckTopology.lean

Statistics

MetricCount
DefinitionsGrothendieckTopology, grothendieckTopology, instHasIsosPrecoverage, instIsStableUnderBaseChangePrecoverage, instIsStableUnderCompositionPrecoverage, isOpenEmbedding, precoverage
7
Theoremsexists_mem_zeroHypercover_range, instIsMultiplicativeIsOpenEmbedding, instIsStableUnderBaseChangeIsOpenEmbedding, instRespectsIsoIsOpenEmbedding, instSmallPrecoverage, isOpenEmbedding_f_zeroHypercover, isOpenEmbedding_iff, subcanonical_grothendieckTopology
8
Total15

CategoryTheory

Definitions

NameCategoryTheorems
GrothendieckTopology πŸ“–CompData
115 mathmath: sheafBotEquivalence_functor, AlgebraicGeometry.Scheme.bot_mem_grothendieckTopology, GrothendieckTopology.mem_toPretopology, GrothendieckTopology.ext_iff, Precoverage.toGrothendieck_le_iff_le_toPrecoverage, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, AlgebraicGeometry.Scheme.zariskiTopology_le_etaleTopology, GrothendieckTopology.OneHypercover.memβ‚€, Functor.OneHypercoverDenseData.mem₁, Presieve.isSheaf_bot, Functor.functorPushforward_imageSieve_mem, extensiveTopology.mem_sieves_iff_contains_colimit_cofan, Pretopology.toGrothendieck_mono, Functor.functorPushforward_mem_iff, GrothendieckTopology.trivial_covering, GrothendieckTopology.intersection_covering_iff, AlgebraicGeometry.Scheme.mem_jointlySurjectiveTopology_iff_jointlySurjectivePretopology, Presheaf.isLocallyInjective_iff_equalizerSieve_mem_imp, GrothendieckTopology.OneHypercover.mem_sieve₁', Pretopology.mem_toGrothendieck, GrothendieckTopology.Cover.preOneHypercover_sieveβ‚€, Precoverage.toGrothendieck_mono, Coverage.toGrothendieck_eq_sInf, Coverage.mem_toGrothendieck_sieves_of_superset, le_topology_of_closedSieves_isSheaf, GrothendieckTopology.top_mem, Functor.IsLocallyFull.functorPushforward_imageSieve_mem, Functor.OneHypercoverDenseData.mem₁₀, Functor.is_cover_of_isCoverDense, AlgebraicGeometry.Scheme.grothendieckTopology_le_grothendieckTopology, GrothendieckTopology.mem_over_iff, regularTopology.mem_sieves_iff_hasEffectiveEpi, GrothendieckTopology.coversTop_iff_of_isTerminal, GrothendieckTopology.bot_covers, Functor.functorPushforward_equalizer_mem, Functor.IsDenseSubsite.equalizer_mem, GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac, GrothendieckTopology.close_eq_top_iff_mem, GrothendieckTopology.coe_copy, AlgebraicGeometry.Scheme.AffineZariskiSite.generate_presieveOfSections_mem_grothendieckTopology, sheafBotEquivalence_inverse_map_val, GrothendieckTopology.le_def, GrothendieckTopology.discrete_eq_top, AlgebraicGeometry.Scheme.mem_overGrothendieckTopology, GrothendieckTopology.Cover.Arrow.hf, sheafBotEquivalence_unitIso, Precoverage.mem_toGrothendieck_iff, GrothendieckTopology.mem_sInf, GrothendieckTopology.OneHypercover.IsPreservedBy.mem₁, sheafBotEquivalence_inverse_obj_val, generate_discretePresieve_mem, coherentTopology.mem_sieves_iff_hasEffectiveEpiFamily, Precoverage.generate_mem_toGrothendieck, Functor.LocallyCoverDense.functorPushforward_functorPullback_mem, Functor.pushforward_cover_iff_cover_pullback, Functor.IsDenseSubsite.functorPushforward_mem_iff, Precoverage.mem_toGrothendieck_iff_of_isStableUnderComposition, Presheaf.IsLocallyInjective.equalizerSieve_mem, GrothendieckTopology.Cover.condition, GrothendieckTopology.trivial_eq_bot, Functor.inducedTopology_sieves, ofGrothendieck_iff, GrothendieckTopology.dense_covering, GrothendieckTopology.OneHypercover.IsPreservedBy.memβ‚€, Functor.OneHypercoverDenseData.sieve_mem, GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac', Functor.OneHypercoverDenseData.memβ‚€, Functor.IsLocallyFaithful.functorPushforward_equalizer_mem, GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac'_assoc, GrothendieckTopology.bot_covering, GrothendieckTopology.mem_sieves_iff_coe, Presheaf.IsLocallySurjective.imageSieve_mem, Presheaf.isSheaf_bot, Coverage.mem_toGrothendieck, Presheaf.equalizerSieve_mem, coherentTopology.mem_sieves_of_hasEffectiveEpiFamily, GrothendieckTopology.Cover.ext_iff, GrothendieckTopology.mem_toPrecoverage_iff, AlgebraicGeometry.Scheme.grothendieckTopology_monotone, TopCat.Presheaf.presieveOfCovering.mem_grothendieckTopology, GrothendieckTopology.pullback_mem_iff_of_isIso, GrothendieckTopology.covering_iff_covers_id, GrothendieckTopology.isGLB_sInf, Pretopology.toGrothendieck_bot, AlgebraicGeometry.Scheme.AffineZariskiSite.mem_grothendieckTopology, Functor.IsCoverDense.is_cover, AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology, regularTopology.mem_sieves_of_hasEffectiveEpi, GrothendieckTopology.Cover.Arrow.to_middle_condition, regularTopology.exists_effectiveEpi_iff_mem_induced, Precoverage.toGrothendieck_eq_sInf, AlgebraicGeometry.Scheme.grothendieckTopology_cover, GrothendieckTopology.top_covers, Sheaf.le_finestTopology, sheafBotEquivalence_counitIso, coherentTopology.exists_effectiveEpiFamily_iff_mem_induced, GrothendieckTopology.covers_iff, Functor.IsCoverDense.functorPullback_pushforward_covering, GrothendieckTopology.Cover.Arrow.from_middle_condition, Functor.mem_inducedTopology_sieves_iff, Pretopology.mem_ofGrothendieck, GrothendieckTopology.Subcanonical.le_canonical, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, GrothendieckTopology.mem_toCoverage_iff, AlgebraicGeometry.Scheme.AffineZariskiSite.mem_grothendieckTopology_iff_sectionsOfPresieve, Functor.IsDenseSubsite.imageSieve_mem, Presheaf.imageSieve_mem, GrothendieckTopology.Cover.coe_pullback, Pretopology.sInf_ofGrothendieck, discreteSieve_mem, GrothendieckTopology.covering_of_eq_top, GrothendieckTopology.OneHypercover.mem₁, AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology, GrothendieckTopology.top_covering, GrothendieckTopology.le_canonical

TopCat

Definitions

NameCategoryTheorems
grothendieckTopology πŸ“–CompOp
1 mathmath: subcanonical_grothendieckTopology
instHasIsosPrecoverage πŸ“–CompOpβ€”
instIsStableUnderBaseChangePrecoverage πŸ“–CompOpβ€”
instIsStableUnderCompositionPrecoverage πŸ“–CompOpβ€”
isOpenEmbedding πŸ“–CompOp
4 mathmath: isOpenEmbedding_iff, instRespectsIsoIsOpenEmbedding, instIsStableUnderBaseChangeIsOpenEmbedding, instIsMultiplicativeIsOpenEmbedding
precoverage πŸ“–CompOp
3 mathmath: instSmallPrecoverage, isOpenEmbedding_f_zeroHypercover, exists_mem_zeroHypercover_range

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_zeroHypercover_range πŸ“–mathematicalβ€”carrier
Set
Set.instMembership
Set.range
CategoryTheory.PreZeroHypercover.X
TopCat
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
str
ContinuousMap.instFunLike
instConcreteCategoryContinuousMapCarrier
CategoryTheory.PreZeroHypercover.f
β€”CategoryTheory.Presieve.map_ofArrows
CategoryTheory.Precoverage.ZeroHypercover.memβ‚€
instIsMultiplicativeIsOpenEmbedding πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsMultiplicative
TopCat
instCategory
isOpenEmbedding
β€”Topology.IsOpenEmbedding.id
Topology.IsOpenEmbedding.comp
instIsStableUnderBaseChangeIsOpenEmbedding πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsStableUnderBaseChange
TopCat
instCategory
isOpenEmbedding
β€”CategoryTheory.MorphismProperty.IsStableUnderBaseChange.mk'
instRespectsIsoIsOpenEmbedding
fst_isOpenEmbedding_of_right
instRespectsIsoIsOpenEmbedding πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsIso
TopCat
instCategory
isOpenEmbedding
β€”CategoryTheory.MorphismProperty.respectsIso_of_isStableUnderComposition
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeIsOpenEmbedding
Homeomorph.isOpenEmbedding
instSmallPrecoverage πŸ“–mathematicalβ€”CategoryTheory.Precoverage.Small
TopCat
instCategory
precoverage
β€”CategoryTheory.Precoverage.Small.inf
CategoryTheory.Precoverage.instSmallComap
CategoryTheory.Types.instSmallJointlySurjectivePrecoverage
isOpenEmbedding_f_zeroHypercover πŸ“–mathematicalβ€”Topology.IsOpenEmbedding
carrier
CategoryTheory.PreZeroHypercover.X
TopCat
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
str
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
ContinuousMap.instFunLike
instConcreteCategoryContinuousMapCarrier
CategoryTheory.PreZeroHypercover.f
β€”CategoryTheory.Precoverage.ZeroHypercover.memβ‚€
isOpenEmbedding_iff πŸ“–mathematicalβ€”isOpenEmbedding
Topology.IsOpenEmbedding
carrier
str
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
instCategory
ContinuousMap
ContinuousMap.instFunLike
instConcreteCategoryContinuousMapCarrier
β€”β€”
subcanonical_grothendieckTopology πŸ“–mathematicalβ€”CategoryTheory.GrothendieckTopology.Subcanonical
TopCat
instCategory
grothendieckTopology
β€”CategoryTheory.GrothendieckTopology.Subcanonical.of_isSheaf_yoneda_obj
CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange_of_small
CategoryTheory.Precoverage.instHasPullbacksOfHasPullbacks
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
topCat_hasLimits
instSmallPrecoverage
CategoryTheory.Presieve.isSheafFor_arrows_iff
Topology.IsOpenEmbedding.toIsEmbedding
isOpenEmbedding_f_zeroHypercover
Continuous.comp'
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
Homeomorph.continuous
CategoryTheory.Limits.PullbackCone.condition
Topology.IsEmbedding.toHomeomorph_symm_apply
exists_mem_zeroHypercover_range
IsOpen.mem_nhds
Topology.IsOpenEmbedding.isOpen_range
ext
ContinuousMap.liftCover_coe

---

← Back to Index