Documentation Verification Report

Clopen

📁 Source: Mathlib/Topology/Clopen.lean

Statistics

MetricCount
Definitions0
Theoremspreimage_isClopen_of_isClopen, compl, diff, frontier_eq, himp, inter, isClosed, isOpen, preimage, prod, union, isClopen_biInter, isClopen_biUnion, isClopen_preimage, continuousOn_boolIndicator_iff_isClopen, continuous_boolIndicator_iff_isClopen, isClopen_biInter_finset, isClopen_biUnion_finset, isClopen_compl_iff, isClopen_discrete, isClopen_empty, isClopen_iInter_of_finite, isClopen_iUnion_of_finite, isClopen_iff_frontier_eq_empty, isClopen_inter_of_disjoint_cover_clopen, isClopen_of_disjoint_cover_open, isClopen_range_inl, isClopen_range_inr, isClopen_range_sigmaMk, isClopen_univ
30
Total30

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
preimage_isClopen_of_isClopen 📖mathematicalContinuousOn
IsClopen
Set
Set.instInter
Set.preimage
preimage_isClosed_of_isClosed
isOpen_inter_preimage

IsClopen

Theorems

NameKindAssumesProvesValidatesDepends On
compl 📖mathematicalIsClopenCompl.compl
Set
Set.instCompl
IsOpen.isClosed_compl
IsClosed.isOpen_compl
diff 📖mathematicalIsClopenSet
Set.instSDiff
inter
compl
frontier_eq 📖mathematicalIsClopenfrontier
Set
Set.instEmptyCollection
isClopen_iff_frontier_eq_empty
himp 📖mathematicalIsClopenHImp.himp
Set
BooleanAlgebra.toHImp
Set.instBooleanAlgebra
himp_eq
union
compl
inter 📖mathematicalIsClopenSet
Set.instInter
IsClosed.inter
IsOpen.inter
isClosed 📖mathematicalIsClopenIsClosed
isOpen 📖mathematicalIsClopenIsOpen
preimage 📖mathematicalIsClopen
Continuous
Set.preimageIsClosed.preimage
IsOpen.preimage
prod 📖mathematicalIsClopeninstTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
IsClosed.prod
IsOpen.prod
union 📖mathematicalIsClopenSet
Set.instUnion
IsClosed.union
IsOpen.union

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
isClopen_biInter 📖mathematicalIsClopenSet.iInter
Set
Set.instMembership
isClosed_biInter
isOpen_biInter
isClopen_biUnion 📖mathematicalIsClopenSet.iUnion
Set
Set.instMembership
isClosed_biUnion
isOpen_biUnion

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
isClopen_preimage 📖mathematicalTopology.IsQuotientMapIsClopen
Set.preimage
isClosed_preimage
isOpen_preimage

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_boolIndicator_iff_isClopen 📖mathematicalContinuousOn
instTopologicalSpaceBool
Set.boolIndicator
IsClopen
Set
Set.instMembership
instTopologicalSpaceSubtype
Set.preimage
continuousOn_iff_continuous_restrict
continuous_boolIndicator_iff_isClopen
continuous_boolIndicator_iff_isClopen 📖mathematicalContinuous
instTopologicalSpaceBool
Set.boolIndicator
IsClopen
continuous_bool_rng
Set.preimage_boolIndicator_true
isClopen_biInter_finset 📖mathematicalIsClopenSet.iInter
Finset
Finset.instMembership
Set.Finite.isClopen_biInter
Finset.finite_toSet
isClopen_biUnion_finset 📖mathematicalIsClopenSet.iUnion
Finset
Finset.instMembership
Set.Finite.isClopen_biUnion
Finset.finite_toSet
isClopen_compl_iff 📖mathematicalIsClopen
Compl.compl
Set
Set.instCompl
IsClopen.compl
compl_compl
isClopen_discrete 📖mathematicalIsClopenisClosed_discrete
isOpen_discrete
isClopen_empty 📖mathematicalIsClopen
Set
Set.instEmptyCollection
isClosed_empty
isOpen_empty
isClopen_iInter_of_finite 📖mathematicalIsClopenSet.iInterisClosed_iInter
isOpen_iInter_of_finite
isClopen_iUnion_of_finite 📖mathematicalIsClopenSet.iUnionisClosed_iUnion_of_finite
isOpen_iUnion
isClopen_iff_frontier_eq_empty 📖mathematicalIsClopen
frontier
Set
Set.instEmptyCollection
IsClopen.eq_1
closure_eq_iff_isClosed
interior_eq_iff_isOpen
frontier.eq_1
Set.diff_eq_empty
Eq.subset
Set.instReflSubset
HasSubset.Subset.antisymm
Set.instAntisymmSubset
HasSubset.Subset.trans
Set.instIsTransSubset
interior_subset
subset_closure
isClopen_inter_of_disjoint_cover_clopen 📖mathematicalIsClopen
Set
Set.instHasSubset
Set.instUnion
IsOpen
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instInterIsClosed.inter
isClosed_compl_iff
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.inter_subset_inter_right
Disjoint.subset_compl_right
Set.notMem_of_mem_compl
IsOpen.inter
isClopen_of_disjoint_cover_open 📖mathematicalSet
Set.instHasSubset
Set.univ
Set.instUnion
IsOpen
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsClopenisClopen_inter_of_disjoint_cover_clopen
isClopen_univ
Set.univ_inter
isClopen_range_inl 📖mathematicalIsClopen
instTopologicalSpaceSum
Set.range
isClosed_range_inl
isOpen_range_inl
isClopen_range_inr 📖mathematicalIsClopen
instTopologicalSpaceSum
Set.range
isClosed_range_inr
isOpen_range_inr
isClopen_range_sigmaMk 📖mathematicalIsClopen
instTopologicalSpaceSigma
Set.range
Topology.IsClosedEmbedding.isClosed_range
Topology.IsClosedEmbedding.sigmaMk
Topology.IsOpenEmbedding.isOpen_range
Topology.IsOpenEmbedding.sigmaMk
isClopen_univ 📖mathematicalIsClopen
Set.univ
isClosed_univ
isOpen_univ

---

← Back to Index