Documentation Verification Report

ClopenBox

πŸ“ Source: Mathlib/Topology/ClopenBox.lean

Statistics

MetricCount
Definitions0
Theoremscountable_iff_secondCountable, countable_prod, exists_finset_eq_sup_prod, exists_prod_subset, finite_prod, surjective_finset_sup_prod
6
Total6

TopologicalSpace.Clopens

Theorems

NameKindAssumesProvesValidatesDepends On
countable_iff_secondCountable πŸ“–mathematicalβ€”Countable
TopologicalSpace.Clopens
SecondCountableTopology
β€”Function.Injective.countable
Function.Injective.of_eq_imp_le
Eq.le
TopologicalSpace.IsTopologicalBasis.eq_generateFrom
loc_compact_Haus_tot_disc_of_zero_dim
WeaklyLocallyCompactSpace.locallyCompactSpace
T2Space.r1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
eq_sUnion_finset_of_isTopologicalBasis_of_isCompact_open
TopologicalSpace.isBasis_countableBasis
IsClosed.isCompact
isClopen'
ext
Finset.countable
Encodable.countable
countable_prod πŸ“–mathematicalβ€”Countable
TopologicalSpace.Clopens
instTopologicalSpaceProd
β€”Function.Surjective.countable
Finset.countable
instCountableProd
surjective_finset_sup_prod
exists_finset_eq_sup_prod πŸ“–mathematicalβ€”Finset.sup
TopologicalSpace.Clopens
instTopologicalSpaceProd
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
SProd.sprod
instSProdProd
β€”IsCompact.elim_nhds_subcover
IsClosed.isCompact
instCompactSpaceProd
isClopen'
IsOpen.mem_nhds
IsClopen.isOpen
Finset.sup_image
le_antisymm
Set.mem_iUnionβ‚‚
SetLike.le_def
instIsConcreteLE
Finset.le_sup
Finset.sup_le
Function.sometimes_spec
exists_prod_subset
exists_prod_subset πŸ“–mathematicalTopologicalSpace.Clopens
instTopologicalSpaceProd
SetLike.instMembership
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SProd.sprod
instSProdProd
β€”Continuous.prodMk_right
IsClosed.isCompact
IsClosed.preimage
isClopen'
IsClopen.preimage
ContinuousMap.isClopen_setOf_mapsTo
ContinuousMap.continuous_toFun
finite_prod πŸ“–mathematicalβ€”Finite
TopologicalSpace.Clopens
instTopologicalSpaceProd
β€”nonempty_fintype
Finite.of_surjective
Finite.of_fintype
surjective_finset_sup_prod
surjective_finset_sup_prod πŸ“–mathematicalβ€”Finset
TopologicalSpace.Clopens
instTopologicalSpaceProd
Finset.sup
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
SProd.sprod
instSProdProd
β€”exists_finset_eq_sup_prod

---

← Back to Index