π Source: Mathlib/Topology/ClopenBox.lean
countable_iff_secondCountable
countable_prod
exists_finset_eq_sup_prod
exists_prod_subset
finite_prod
surjective_finset_sup_prod
Countable
TopologicalSpace.Clopens
SecondCountableTopology
Function.Injective.countable
Function.Injective.of_eq_imp_le
Eq.le
TopologicalSpace.IsTopologicalBasis.eq_generateFrom
loc_compact_Haus_tot_disc_of_zero_dim
WeaklyLocallyCompactSpace.locallyCompactSpace
T2Space.r1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
eq_sUnion_finset_of_isTopologicalBasis_of_isCompact_open
TopologicalSpace.isBasis_countableBasis
IsClosed.isCompact
isClopen'
ext
Finset.countable
Encodable.countable
instTopologicalSpaceProd
Function.Surjective.countable
instCountableProd
Finset.sup
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
SProd.sprod
instSProdProd
IsCompact.elim_nhds_subcover
instCompactSpaceProd
IsOpen.mem_nhds
IsClopen.isOpen
Finset.sup_image
le_antisymm
Set.mem_iUnionβ
SetLike.le_def
instIsConcreteLE
Finset.le_sup
Finset.sup_le
Function.sometimes_spec
SetLike.instMembership
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Continuous.prodMk_right
IsClosed.preimage
IsClopen.preimage
ContinuousMap.isClopen_setOf_mapsTo
ContinuousMap.continuous_toFun
Finite
nonempty_fintype
Finite.of_surjective
Finite.of_fintype
Finset
---
β Back to Index