Documentation Verification Report

Closure

πŸ“ Source: Mathlib/Topology/Closure.lean

Statistics

MetricCount
Definitions0
Theoremsclosure, closure_eq, exists_mem_open, induction, inter_open_nonempty, interior_compl, mono, nonempty, nonempty_iff, of_closure, of_comp, closure_left, closure_right, frontier_left, frontier_right, lift'_closure, lift'_closure_eq_self, lift'_interior, lift'_interior_eq_self, le_lift'_closure, lift'_closure_eq_bot, lift'_interior_le, closure_biUnion, interior_iInter, closure_eq, closure_interior_subset, closure_subset, closure_subset_iff, frontier_eq, frontier_subset, mem_iff_closure_subset, frontier_eq, inter_frontier_eq, interior_eq, subset_interior_closure, subset_interior_iff, closure_biUnion, closure_sUnion, interior_biInter, interior_sInter, closure, of_closure, closure_closure, closure_compl, closure_diff_frontier, closure_diff_interior, closure_empty, closure_empty_iff, closure_eq_compl_interior_compl, closure_eq_iff_isClosed, closure_eq_interior_union_frontier, closure_eq_self_union_frontier, closure_iUnion_of_finite, closure_iUnionβ‚‚_le_nat, closure_iUnionβ‚‚_lt_nat, closure_inter_of_codisjoint_interior, closure_inter_open_nonempty_iff, closure_inter_subset, closure_inter_subset_inter_closure, closure_interior_idem, closure_minimal, closure_mono, closure_nonempty_iff, closure_subset_iff_isClosed, closure_union, closure_univ, compl_frontier_eq_union_interior, dense_closure, dense_compl_singleton_iff_not_open, dense_iff_closure_eq, dense_iff_inter_open, dense_univ, diff_subset_closure_iff, disjoint_frontier_iff_isOpen, disjoint_interior_frontier, exists_isClosed_iff, exists_isOpen_iff, forall_isClosed_iff, forall_isOpen_iff, frontier_closure_subset, frontier_compl, frontier_empty, frontier_eq_closure_inter_closure, frontier_eq_inter_compl_interior, frontier_inter_subset, frontier_interior_subset, frontier_subset_closure, frontier_subset_iff_isClosed, frontier_union_subset, frontier_univ, interior_closure_idem, interior_compl, interior_empty, interior_eq_compl_closure_compl, interior_eq_empty_iff_dense_compl, interior_eq_iff_isOpen, interior_eq_univ, interior_frontier, interior_iInter_of_finite, interior_iInter_subset, interior_iInterβ‚‚_le_nat, interior_iInterβ‚‚_lt_nat, interior_iInterβ‚‚_subset, interior_inter, interior_interior, interior_maximal, interior_mono, interior_sInter_subset, interior_subset, interior_subset_closure, interior_subset_iff, interior_union_inter_interior_compl_left_subset, interior_union_inter_interior_compl_right_subset, interior_union_isClosed_of_interior_empty, interior_union_of_disjoint_closure, interior_univ, isClosed_closure, isClosed_frontier, isClosed_of_closure_subset, isOpen_iff_forall_mem_open, isOpen_interior, mem_closure_iff, mem_interior, monotone_closure, notMem_of_notMem_closure, self_diff_frontier, subset_closure, subset_closure_inter_union_closure_compl_left, subset_closure_inter_union_closure_compl_right, subset_interior_iff, subset_interior_iff_isOpen, subset_interior_union
132
Total132

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalDenseclosureβ€”dense_closure
closure_eq πŸ“–mathematicalDenseclosure
Set.univ
β€”dense_iff_closure_eq
exists_mem_open πŸ“–mathematicalDense
IsOpen
Set.Nonempty
Set
Set.instMembership
β€”inter_open_nonempty
induction πŸ“–β€”Denseβ€”β€”HasSubset.Subset.trans
Set.instIsTransSubset
Eq.subset
Set.instReflSubset
closure_eq
IsClosed.closure_subset_iff
Set.mem_univ
inter_open_nonempty πŸ“–mathematicalDense
IsOpen
Set.Nonempty
Set
Set.instInter
β€”dense_iff_inter_open
interior_compl πŸ“–mathematicalDenseinterior
Compl.compl
Set
Set.instCompl
Set.instEmptyCollection
β€”interior_eq_empty_iff_dense_compl
compl_compl
mono πŸ“–β€”Set
Set.instHasSubset
Dense
β€”β€”closure_mono
nonempty πŸ“–mathematicalDenseSet.Nonemptyβ€”nonempty_iff
nonempty_iff πŸ“–mathematicalDenseSet.Nonemptyβ€”inter_open_nonempty
isOpen_univ
of_closure πŸ“–β€”Dense
closure
β€”β€”dense_closure

DenseRange

Theorems

NameKindAssumesProvesValidatesDepends On
of_comp πŸ“–β€”DenseRangeβ€”β€”Dense.mono
Set.range_comp_subset_range

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
closure_left πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsOpen
closureβ€”mono_left
closure_minimal
subset_compl_right
IsOpen.isClosed_compl
disjoint_compl_left
closure_right πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsOpen
closureβ€”symm
closure_left
frontier_left πŸ“–mathematicalIsOpen
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
frontierβ€”Set.subset_compl_iff_disjoint_right
HasSubset.Subset.trans
Set.instIsTransSubset
frontier_subset_closure
closure_minimal
Set.disjoint_left
isClosed_compl_iff
frontier_right πŸ“–mathematicalIsOpen
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
frontierβ€”symm
frontier_left

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
le_lift'_closure πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift'
closure
β€”le_lift'
mem_of_superset
subset_closure
lift'_closure_eq_bot πŸ“–mathematicalβ€”lift'
closure
Bot.bot
Filter
instBot
β€”bot_unique
le_lift'_closure
lift'_bot
monotone_closure
closure_empty
principal_empty
lift'_interior_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift'
interior
β€”mem_of_superset
mem_lift'
interior_subset

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
lift'_closure πŸ“–mathematicalFilter.HasBasisFilter.lift'
closure
β€”lift'
monotone_closure
lift'_closure_eq_self πŸ“–mathematicalFilter.HasBasis
IsClosed
Filter.lift'
closure
β€”le_antisymm
ge_iff
Filter.mem_lift'
mem_of_mem
IsClosed.closure_eq
Filter.le_lift'_closure
lift'_interior πŸ“–mathematicalFilter.HasBasisFilter.lift'
interior
β€”lift'
interior_mono
lift'_interior_eq_self πŸ“–mathematicalFilter.HasBasis
IsOpen
Filter.lift'
interior
β€”le_antisymm
Filter.lift'_interior_le
ge_iff
lift'_interior
IsOpen.interior_eq
mem_of_mem

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
closure_biUnion πŸ“–mathematicalβ€”closure
Set.iUnion
Finset
instMembership
β€”Set.Finite.closure_biUnion
finite_toSet
interior_iInter πŸ“–mathematicalβ€”interior
Set.iInter
Finset
instMembership
β€”Set.Finite.interior_biInter
finite_toSet

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq πŸ“–mathematicalβ€”closureβ€”Set.Subset.antisymm
closure_minimal
Set.Subset.refl
subset_closure
closure_interior_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
interior
β€”closure_subset_iff
interior_subset
closure_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
β€”closure_minimal
Set.Subset.refl
closure_subset_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
β€”Set.Subset.trans
subset_closure
closure_minimal
frontier_eq πŸ“–mathematicalβ€”frontier
Set
Set.instSDiff
interior
β€”frontier.eq_1
closure_eq
frontier_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
β€”frontier_subset_iff_isClosed
mem_iff_closure_subset πŸ“–mathematicalβ€”Set
Set.instMembership
Set.instHasSubset
closure
Set.instSingletonSet
β€”closure_subset_iff
Set.singleton_subset_iff

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
frontier_eq πŸ“–mathematicalIsOpenfrontier
Set
Set.instSDiff
closure
β€”frontier.eq_1
interior_eq
inter_frontier_eq πŸ“–mathematicalIsOpenSet
Set.instInter
frontier
Set.instEmptyCollection
β€”frontier_eq
Set.inter_diff_self
interior_eq πŸ“–mathematicalIsOpeninteriorβ€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
interior_subset
interior_maximal
Set.Subset.refl
subset_interior_closure πŸ“–mathematicalIsOpenSet
Set.instHasSubset
interior
closure
β€”subset_interior_iff
subset_closure
subset_interior_iff πŸ“–mathematicalIsOpenSet
Set.instHasSubset
interior
β€”Set.Subset.trans
interior_subset
interior_maximal

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
closure_biUnion πŸ“–mathematicalβ€”closure
Set.iUnion
Set
Set.instMembership
β€”closure_eq_compl_interior_compl
Set.compl_iUnion
interior_biInter
Set.compl_iInter
Set.iUnion_congr_Prop
closure_sUnion πŸ“–mathematicalβ€”closure
Set.sUnion
Set.iUnion
Set
Set.instMembership
β€”Set.sUnion_eq_biUnion
closure_biUnion
interior_biInter πŸ“–mathematicalβ€”interior
Set.iInter
Set
Set.instMembership
β€”induction_on
Set.iInter_congr_Prop
Set.iInter_of_empty
instIsEmptyFalse
Set.iInter_univ
interior_univ
Set.iInter_iInter_eq_or_left
interior_inter
interior_sInter πŸ“–mathematicalβ€”interior
Set.sInter
Set.iInter
Set
Set.instMembership
β€”Set.sInter_eq_biInter
interior_biInter

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalSet.Nonemptyclosureβ€”closure_nonempty_iff
of_closure πŸ“–β€”Set.Nonempty
closure
β€”β€”closure_nonempty_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
closure_closure πŸ“–mathematicalβ€”closureβ€”IsClosed.closure_eq
isClosed_closure
closure_compl πŸ“–mathematicalβ€”closure
Compl.compl
Set
Set.instCompl
interior
β€”closure_eq_compl_interior_compl
compl_compl
closure_diff_frontier πŸ“–mathematicalβ€”Set
Set.instSDiff
closure
frontier
interior
β€”frontier.eq_1
Set.diff_diff_right_self
Set.inter_eq_self_of_subset_right
interior_subset_closure
closure_diff_interior πŸ“–mathematicalβ€”Set
Set.instSDiff
closure
interior
frontier
β€”β€”
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
β€”IsClosed.closure_eq
isClosed_empty
closure_empty_iff πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
β€”Set.subset_eq_empty
subset_closure
closure_empty
closure_eq_compl_interior_compl πŸ“–mathematicalβ€”closure
Compl.compl
Set
Set.instCompl
interior
β€”interior.eq_1
closure.eq_1
Set.compl_sUnion
Set.compl_image_set_of
closure_eq_iff_isClosed πŸ“–mathematicalβ€”closure
IsClosed
β€”isClosed_closure
IsClosed.closure_eq
closure_eq_interior_union_frontier πŸ“–mathematicalβ€”closure
Set
Set.instUnion
interior
frontier
β€”Set.union_diff_cancel
interior_subset_closure
closure_eq_self_union_frontier πŸ“–mathematicalβ€”closure
Set
Set.instUnion
frontier
β€”Set.union_diff_cancel'
interior_subset
subset_closure
closure_iUnion_of_finite πŸ“–mathematicalβ€”closure
Set.iUnion
β€”Set.sUnion_range
Set.Finite.closure_sUnion
Set.finite_range
Set.biUnion_range
closure_iUnionβ‚‚_le_nat πŸ“–mathematicalβ€”closure
Set.iUnion
β€”Set.Finite.closure_biUnion
Set.finite_le_nat
closure_iUnionβ‚‚_lt_nat πŸ“–mathematicalβ€”closure
Set.iUnion
β€”Set.Finite.closure_biUnion
Set.finite_lt_nat
closure_inter_of_codisjoint_interior πŸ“–mathematicalCodisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instOrderTop
interior
closure
Set.instInter
β€”compl_inj_iff
Set.compl_inter
interior_union_of_disjoint_closure
closure_compl
closure_inter_open_nonempty_iff πŸ“–mathematicalIsOpenSet.Nonempty
Set
Set.instInter
closure
β€”mem_closure_iff
Set.inter_comm
Set.Nonempty.mono
inf_le_inf_right
subset_closure
closure_inter_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
Set.instInter
β€”Set.subset_inter
closure_mono
Set.inter_subset_left
Set.inter_subset_right
closure_inter_subset_inter_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
Set.instInter
β€”Monotone.map_inf_le
monotone_closure
closure_interior_idem πŸ“–mathematicalβ€”closure
interior
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
IsClosed.closure_interior_subset
isClosed_closure
closure_mono
IsOpen.subset_interior_closure
isOpen_interior
closure_minimal πŸ“–mathematicalSet
Set.instHasSubset
closureβ€”Set.sInter_subset_of_mem
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
closureβ€”closure_minimal
Set.Subset.trans
subset_closure
isClosed_closure
closure_nonempty_iff πŸ“–mathematicalβ€”Set.Nonempty
closure
β€”β€”
closure_subset_iff_isClosed πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
IsClosed
β€”isClosed_of_closure_subset
IsClosed.closure_subset
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
β€”closure_eq_compl_interior_compl
Set.compl_union
interior_inter
Set.compl_inter
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
β€”IsClosed.closure_eq
isClosed_univ
compl_frontier_eq_union_interior πŸ“–mathematicalβ€”Compl.compl
Set
Set.instCompl
frontier
Set.instUnion
interior
β€”frontier_eq_inter_compl_interior
Set.compl_inter
compl_compl
dense_closure πŸ“–mathematicalβ€”Dense
closure
β€”Dense.eq_1
closure_closure
dense_compl_singleton_iff_not_open πŸ“–mathematicalβ€”Dense
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
IsOpen
β€”Set.Nonempty.ne_empty
Dense.inter_open_nonempty
Set.singleton_nonempty
Set.inter_compl_self
dense_iff_inter_open
Set.inter_compl_nonempty_iff
Set.eq_singleton_iff_nonempty_unique_mem
dense_iff_closure_eq πŸ“–mathematicalβ€”Dense
closure
Set.univ
β€”Set.eq_univ_iff_forall
dense_iff_inter_open πŸ“–mathematicalβ€”Dense
Set.Nonempty
Set
Set.instInter
β€”mem_closure_iff
dense_univ πŸ“–mathematicalβ€”Dense
Set.univ
β€”subset_closure
diff_subset_closure_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instSDiff
closure
β€”Set.diff_subset_iff
Set.union_eq_self_of_subset_left
subset_closure
disjoint_frontier_iff_isOpen πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
frontier
IsOpen
β€”isClosed_compl_iff
frontier_subset_iff_isClosed
frontier_compl
Set.subset_compl_iff_disjoint_right
disjoint_interior_frontier πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
interior
frontier
β€”Set.disjoint_iff_inter_eq_empty
closure_diff_interior
Set.diff_eq
Set.inter_assoc
Set.inter_comm
Set.compl_inter_self
Set.empty_inter
exists_isClosed_iff πŸ“–mathematicalβ€”IsClosed
closure
β€”IsClosed.closure_eq
isClosed_closure
exists_isOpen_iff πŸ“–mathematicalβ€”IsOpen
interior
β€”IsOpen.interior_eq
isOpen_interior
forall_isClosed_iff πŸ“–mathematicalβ€”closureβ€”isClosed_closure
IsClosed.closure_eq
forall_isOpen_iff πŸ“–mathematicalβ€”interiorβ€”isOpen_interior
IsOpen.interior_eq
frontier_closure_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
closure
β€”Set.diff_subset_diff
Eq.subset
Set.instReflSubset
closure_closure
interior_mono
subset_closure
frontier_compl πŸ“–mathematicalβ€”frontier
Compl.compl
Set
Set.instCompl
β€”frontier_eq_closure_inter_closure
compl_compl
Set.inter_comm
frontier_empty πŸ“–mathematicalβ€”frontier
Set
Set.instEmptyCollection
β€”IsClosed.closure_eq
interior_empty
sdiff_self
frontier_eq_closure_inter_closure πŸ“–mathematicalβ€”frontier
Set
Set.instInter
closure
Compl.compl
Set.instCompl
β€”closure_compl
frontier.eq_1
Set.diff_eq
frontier_eq_inter_compl_interior πŸ“–mathematicalβ€”frontier
Set
Set.instInter
Compl.compl
Set.instCompl
interior
β€”frontier_compl
closure_compl
Set.diff_eq
closure_diff_interior
frontier_inter_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
Set.instInter
Set.instUnion
closure
β€”frontier_eq_closure_inter_closure
Set.compl_inter
closure_union
LE.le.trans_eq
Set.inter_subset_inter_left
closure_inter_subset_inter_closure
Set.inter_union_distrib_left
Set.inter_assoc
Set.inter_comm
frontier_interior_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
interior
β€”Set.diff_subset_diff
closure_mono
interior_subset
Eq.subset
Set.instReflSubset
interior_interior
frontier_subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
closure
β€”Set.diff_subset
frontier_subset_iff_isClosed πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
IsClosed
β€”frontier.eq_1
Set.diff_subset_iff
Set.union_eq_right
interior_subset
closure_subset_iff_isClosed
frontier_union_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
Set.instUnion
Set.instInter
closure
Compl.compl
Set.instCompl
β€”frontier_compl
frontier_inter_subset
frontier_univ πŸ“–mathematicalβ€”frontier
Set.univ
Set
Set.instEmptyCollection
β€”IsClosed.closure_eq
interior_univ
sdiff_self
interior_closure_idem πŸ“–mathematicalβ€”interior
closure
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
interior_mono
IsClosed.closure_interior_subset
isClosed_closure
IsOpen.subset_interior_closure
isOpen_interior
interior_compl πŸ“–mathematicalβ€”interior
Compl.compl
Set
Set.instCompl
closure
β€”closure_eq_compl_interior_compl
compl_compl
interior_empty πŸ“–mathematicalβ€”interior
Set
Set.instEmptyCollection
β€”IsOpen.interior_eq
isOpen_empty
interior_eq_compl_closure_compl πŸ“–mathematicalβ€”interior
Compl.compl
Set
Set.instCompl
closure
β€”closure_compl
compl_compl
interior_eq_empty_iff_dense_compl πŸ“–mathematicalβ€”interior
Set
Set.instEmptyCollection
Dense
Compl.compl
Set.instCompl
β€”dense_iff_closure_eq
closure_compl
Set.compl_univ_iff
interior_eq_iff_isOpen πŸ“–mathematicalβ€”interior
IsOpen
β€”isOpen_interior
IsOpen.interior_eq
interior_eq_univ πŸ“–mathematicalβ€”interior
Set.univ
β€”Set.univ_subset_iff
Eq.trans_le
interior_subset
interior_univ
interior_frontier πŸ“–mathematicalβ€”interior
frontier
Set
Set.instEmptyCollection
β€”IsClosed.frontier_eq
interior_mono
Set.diff_subset
interior_subset
Set.subset_inter
Set.subset_empty_iff
Set.inter_diff_self
interior_iInter_of_finite πŸ“–mathematicalβ€”interior
Set.iInter
β€”Set.sInter_range
Set.Finite.interior_sInter
Set.finite_range
Set.biInter_range
interior_iInter_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
Set.iInter
β€”Set.subset_iInter
interior_mono
Set.iInter_subset
interior_iInterβ‚‚_le_nat πŸ“–mathematicalβ€”interior
Set.iInter
β€”Set.Finite.interior_biInter
Set.finite_le_nat
interior_iInterβ‚‚_lt_nat πŸ“–mathematicalβ€”interior
Set.iInter
β€”Set.Finite.interior_biInter
Set.finite_lt_nat
interior_iInterβ‚‚_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
Set.iInter
β€”HasSubset.Subset.trans
Set.instIsTransSubset
interior_iInter_subset
Set.iInter_mono
interior_inter πŸ“–mathematicalβ€”interior
Set
Set.instInter
β€”LE.le.antisymm
Monotone.map_inf_le
interior_mono
interior_maximal
Set.inter_subset_inter
interior_subset
IsOpen.inter
isOpen_interior
interior_interior πŸ“–mathematicalβ€”interiorβ€”IsOpen.interior_eq
isOpen_interior
interior_maximal πŸ“–mathematicalSet
Set.instHasSubset
IsOpen
interiorβ€”Set.subset_sUnion_of_mem
interior_mono πŸ“–mathematicalSet
Set.instHasSubset
interiorβ€”interior_maximal
Set.Subset.trans
interior_subset
isOpen_interior
interior_sInter_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
Set.sInter
Set.iInter
Set.instMembership
β€”Set.sInter_eq_biInter
interior_iInterβ‚‚_subset
interior_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
β€”Set.sUnion_subset
interior_subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
closure
β€”Set.Subset.trans
interior_subset
subset_closure
interior_subset_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
β€”β€”
interior_union_inter_interior_compl_left_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instInter
interior
Set.instUnion
Compl.compl
Set.instCompl
β€”Eq.trans_subset
interior_inter
interior_mono
Set.union_inter_compl_left_subset
interior_union_inter_interior_compl_right_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instInter
interior
Set.instUnion
Compl.compl
Set.instCompl
β€”Eq.trans_subset
interior_inter
interior_mono
Set.union_inter_compl_right_subset
interior_union_isClosed_of_interior_empty πŸ“–mathematicalinterior
Set
Set.instEmptyCollection
Set.instUnionβ€”by_contradiction
IsOpen.subset_interior_iff
IsOpen.sdiff
Set.Subset.antisymm
interior_maximal
isOpen_interior
interior_mono
Set.subset_union_left
interior_union_of_disjoint_closure πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
interior
Set.instUnion
β€”interior_compl
subset_antisymm
Set.instAntisymmSubset
Set.inter_univ
Set.inter_union_distrib_left
Set.union_subset
HasSubset.Subset.trans
Set.instIsTransSubset
interior_union_inter_interior_compl_left_subset
Set.subset_union_right
interior_union_inter_interior_compl_right_subset
Set.subset_union_left
subset_interior_union
interior_univ πŸ“–mathematicalβ€”interior
Set.univ
β€”IsOpen.interior_eq
isOpen_univ
isClosed_closure πŸ“–mathematicalβ€”IsClosed
closure
β€”isClosed_sInter
isClosed_frontier πŸ“–mathematicalβ€”IsClosed
frontier
β€”frontier_eq_closure_inter_closure
IsClosed.inter
isClosed_closure
isClosed_of_closure_subset πŸ“–mathematicalSet
Set.instHasSubset
closure
IsClosedβ€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
subset_closure
isClosed_closure
isOpen_iff_forall_mem_open πŸ“–mathematicalβ€”IsOpen
Set
Set.instHasSubset
Set.instMembership
β€”subset_interior_iff_isOpen
isOpen_interior πŸ“–mathematicalβ€”IsOpen
interior
β€”isOpen_sUnion
mem_closure_iff πŸ“–mathematicalβ€”Set
Set.instMembership
closure
Set.Nonempty
Set.instInter
β€”by_contradiction
closure_minimal
isClosed_compl_iff
IsClosed.isOpen_compl
mem_interior πŸ“–mathematicalβ€”Set
Set.instMembership
interior
Set.instHasSubset
IsOpen
β€”β€”
monotone_closure πŸ“–mathematicalβ€”Monotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
closure
β€”closure_mono
notMem_of_notMem_closure πŸ“–β€”Set
Set.instMembership
closure
β€”β€”subset_closure
self_diff_frontier πŸ“–mathematicalβ€”Set
Set.instSDiff
frontier
interior
β€”frontier.eq_1
Set.diff_diff_right
Set.diff_eq_empty
subset_closure
Set.inter_eq_self_of_subset_right
interior_subset
Set.empty_union
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
β€”Set.subset_sInter
subset_closure_inter_union_closure_compl_left πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
Set.instUnion
Set.instInter
Compl.compl
Set.instCompl
β€”LE.le.trans_eq
closure_mono
Set.subset_inter_union_compl_left
closure_union
subset_closure_inter_union_closure_compl_right πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
Set.instUnion
Set.instInter
Compl.compl
Set.instCompl
β€”LE.le.trans_eq
closure_mono
Set.subset_inter_union_compl_right
closure_union
subset_interior_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
IsOpen
β€”isOpen_interior
interior_subset
HasSubset.Subset.trans
Set.instIsTransSubset
interior_maximal
subset_interior_iff_isOpen πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
IsOpen
β€”interior_eq_iff_isOpen
subset_interior_union πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instUnion
interior
β€”Set.union_subset
interior_mono
Set.subset_union_left
Set.subset_union_right

---

← Back to Index