Closure
π Source: Mathlib/Topology/Closure.lean
Statistics
Dense
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closure π | mathematical | Dense | closure | β | dense_closure |
closure_eq π | mathematical | Dense | closureSet.univ | β | dense_iff_closure_eq |
exists_mem_open π | mathematical | DenseIsOpenSet.Nonempty | SetSet.instMembership | β | inter_open_nonempty |
induction π | β | Dense | β | β | HasSubset.Subset.transSet.instIsTransSubsetEq.subsetSet.instReflSubsetclosure_eqIsClosed.closure_subset_iffSet.mem_univ |
inter_open_nonempty π | mathematical | DenseIsOpenSet.Nonempty | SetSet.instInter | β | dense_iff_inter_open |
interior_compl π | mathematical | Dense | interiorCompl.complSetSet.instComplSet.instEmptyCollection | β | interior_eq_empty_iff_dense_complcompl_compl |
mono π | β | SetSet.instHasSubsetDense | β | β | closure_mono |
nonempty π | mathematical | Dense | Set.Nonempty | β | nonempty_iff |
nonempty_iff π | mathematical | Dense | Set.Nonempty | β | inter_open_nonemptyisOpen_univ |
of_closure π | β | Denseclosure | β | β | dense_closure |
DenseRange
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_comp π | β | DenseRange | β | β | Dense.monoSet.range_comp_subset_range |
Disjoint
Theorems
Filter
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
le_lift'_closure π | mathematical | β | FilterPreorder.toLEPartialOrder.toPreorderinstPartialOrderlift'closure | β | le_lift'mem_of_supersetsubset_closure |
lift'_closure_eq_bot π | mathematical | β | lift'closureBot.botFilterinstBot | β | bot_uniquele_lift'_closurelift'_botmonotone_closureclosure_emptyprincipal_empty |
lift'_interior_le π | mathematical | β | FilterPreorder.toLEPartialOrder.toPreorderinstPartialOrderlift'interior | β | mem_of_supersetmem_lift'interior_subset |
Filter.HasBasis
Theorems
Finset
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closure_biUnion π | mathematical | β | closureSet.iUnionFinsetinstMembership | β | Set.Finite.closure_biUnionfinite_toSet |
interior_iInter π | mathematical | β | interiorSet.iInterFinsetinstMembership | β | Set.Finite.interior_biInterfinite_toSet |
IsClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closure_eq π | mathematical | β | closure | β | Set.Subset.antisymmclosure_minimalSet.Subset.reflsubset_closure |
closure_interior_subset π | mathematical | β | SetSet.instHasSubsetclosureinterior | β | closure_subset_iffinterior_subset |
closure_subset π | mathematical | β | SetSet.instHasSubsetclosure | β | closure_minimalSet.Subset.refl |
closure_subset_iff π | mathematical | β | SetSet.instHasSubsetclosure | β | Set.Subset.transsubset_closureclosure_minimal |
frontier_eq π | mathematical | β | frontierSetSet.instSDiffinterior | β | frontier.eq_1closure_eq |
frontier_subset π | mathematical | β | SetSet.instHasSubsetfrontier | β | frontier_subset_iff_isClosed |
mem_iff_closure_subset π | mathematical | β | SetSet.instMembershipSet.instHasSubsetclosureSet.instSingletonSet | β | closure_subset_iffSet.singleton_subset_iff |
IsOpen
Theorems
Set.Finite
Theorems
Set.Nonempty
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closure π | mathematical | Set.Nonempty | closure | β | closure_nonempty_iff |
of_closure π | β | Set.Nonemptyclosure | β | β | closure_nonempty_iff |
(root)
Theorems
---