Documentation Verification Report

ClusterPt

📁 Source: Mathlib/Topology/ClusterPt.lean

Statistics

MetricCount
DefinitionsClusterPt
1
TheoremsclusterPt, mono, frequently, frequently', mapClusterPt_id, mem_closure, mem_closure_of_mem, mono, neBot, of_inf_left, of_inf_right, of_le_nhds, of_le_nhds', of_nhds_le, top, mapClusterPt, mapClusterPt_iff, clusterPt_iff, clusterPt_iff_forall_mem_closure, clusterPt_iff_frequently, clusterPt_iff_frequently', mapClusterPt_iff_frequently, mapClusterPt, mem_of_mapClusterPt, clusterPt, congrFun, continuousAt_comp, frequently, mono, of_comp, tendsto_comp, tendsto_comp', accPt_iff_clusterPt, accPt_iff_frequently, accPt_iff_frequently_nhdsNE, accPt_iff_nhds, accPt_principal_iff_clusterPt, accPt_principal_iff_nhdsWithin, accPt_sup, closure_compl_singleton, closure_eq_cluster_pts, clusterPt_iff_forall_mem_closure, clusterPt_iff_frequently, clusterPt_iff_frequently', clusterPt_iff_lift'_closure, clusterPt_iff_lift'_closure', clusterPt_iff_nonempty, clusterPt_iff_not_disjoint, clusterPt_lift'_closure_iff, clusterPt_principal, clusterPt_principal_iff, clusterPt_principal_iff_frequently, clusterPt_sup, dense_compl_singleton, interior_singleton, isClosed_iff_clusterPt, isClosed_iff_forall_filter, isClosed_iff_nhds, isClosed_setOf_clusterPt, mapClusterPt_comp, mapClusterPt_def, mapClusterPt_id_iff, mapClusterPt_iff_frequently, mem_closure_iff_clusterPt, mem_closure_iff_comap_neBot, mem_closure_iff_nhds, mem_closure_iff_nhds', mem_closure_iff_nhdsWithin_neBot, mem_closure_iff_nhds_basis, mem_closure_iff_nhds_basis', mem_closure_iff_nhds_ne_bot, mem_closure_of_mem_closure_union, mem_interior_iff_not_clusterPt_compl, notMem_closure_iff_nhdsWithin_eq_bot, not_isOpen_singleton
75
Total76

AccPt

Theorems

NameKindAssumesProvesValidatesDepends On
clusterPt 📖mathematicalClusterPtClusterPt.mono
accPt_iff_clusterPt
inf_le_right
mono 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
AccPtFilter.NeBot.mono
inf_le_inf_left

ClusterPt

Theorems

NameKindAssumesProvesValidatesDepends On
frequently 📖mathematicalFilter.Eventually
nhds
Filter.FrequentlyclusterPt_iff_frequently
frequently' 📖mathematicalFilter.EventuallyFilter.Frequently
nhds
clusterPt_iff_frequently'
mapClusterPt_id 📖mathematicalMapClusterPtmapClusterPt_id_iff
mem_closure 📖mathematicalSet
Set.instMembership
closure
mem_closure_iff_clusterPt
mem_closure_of_mem 📖mathematicalSet
Filter
Filter.instMembership
Set.instMembership
closure
clusterPt_iff_forall_mem_closure
mono 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
ClusterPtFilter.NeBot.mono
inf_le_inf_left
neBot 📖mathematicalFilter.NeBot
Filter
Filter.instInf
nhds
of_inf_left 📖mathematicalClusterPtmono
inf_le_left
of_inf_right 📖mathematicalClusterPtmono
inf_le_right
of_le_nhds 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
ClusterPteq_1
inf_eq_right
of_le_nhds' 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
ClusterPtof_le_nhds
of_nhds_le 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
ClusterPtinf_eq_left
top 📖mathematicalClusterPt
Top.top
Filter
Filter.instTop
inf_of_le_left

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
mapClusterPt 📖mathematicalContinuousAtMapClusterPtMapClusterPt.continuousAt_comp
ClusterPt.mapClusterPt_id

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
mapClusterPt_iff 📖mathematicalFilter.EventuallyEqMapClusterPtFilter.map_congr

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
clusterPt_iff 📖mathematicalFilter.HasBasis
nhds
ClusterPt
Set.Nonempty
Set
Set.instInter
inf_basis_neBot_iff
clusterPt_iff_forall_mem_closure 📖mathematicalFilter.HasBasisClusterPt
Set
Set.instMembership
closure
clusterPt_iff
nhds_basis_opens
clusterPt_iff_frequently 📖mathematicalFilter.HasBasis
nhds
ClusterPt
Filter.Frequently
Set
Set.instMembership
clusterPt_iff
Filter.basis_sets
Set.inter_comm
clusterPt_iff_frequently' 📖mathematicalFilter.HasBasisClusterPt
Filter.Frequently
Set
Set.instMembership
nhds
clusterPt_iff
Filter.basis_sets
mapClusterPt_iff_frequently 📖mathematicalFilter.HasBasis
nhds
MapClusterPt
Filter.Frequently
Set
Set.instMembership
clusterPt_iff_frequently

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
mapClusterPt 📖mathematicalFilter.Tendsto
nhds
MapClusterPtClusterPt.of_le_nhds
Filter.map_neBot

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
mem_of_mapClusterPt 📖Filter.Eventually
Set
Set.instMembership
Filter.Frequently.mem_of_closed
ClusterPt.frequently'

MapClusterPt

Theorems

NameKindAssumesProvesValidatesDepends On
clusterPt 📖mathematicalClusterPt
Filter.map
mapClusterPt_def
congrFun 📖mathematicalFilter.EventuallyEqMapClusterPtFilter.EventuallyEq.mapClusterPt_iff
continuousAt_comp 📖mathematicalContinuousAtMapClusterPttendsto_comp
frequently 📖mathematicalFilter.Eventually
nhds
Filter.FrequentlyClusterPt.frequently
clusterPt
mono 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
MapClusterPtClusterPt.mono
clusterPt
Filter.map_mono
of_comp 📖mathematicalFilter.TendstoMapClusterPtClusterPt.mono
clusterPt
Filter.map_mono
tendsto_comp 📖mathematicalFilter.Tendsto
nhds
MapClusterPttendsto_comp'
Filter.Tendsto.mono_left
inf_le_left
tendsto_comp' 📖mathematicalFilter.Tendsto
Filter
Filter.instInf
nhds
Filter.map
MapClusterPtFilter.Tendsto.neBot
Filter.tendsto_inf
Filter.Tendsto.mono_left
Filter.tendsto_map
inf_le_right

(root)

Definitions

NameCategoryTheorems
ClusterPt 📖MathDef
56 mathmath: Filter.HasBasis.clusterPt_iff_frequently', le_nhds_iff_adhp_of_cauchy, Ultrafilter.clusterPt_iff, clusterPt_sup, clusterPt_principal_iff, ClusterPt.mono, Filter.TotallyBounded.exists_clusterPt, closure_eq_cluster_pts, mapClusterPt_id_iff, isOpenMap_iff_clusterPt_comap, mapClusterPt_def, isProperMap_iff_clusterPt, ClusterPt.of_le_nhds, MapClusterPt.clusterPt, Specializes.clusterPt, clusterPt_iff_frequently', ClusterPt.top, Filter.HasBasis.clusterPt_iff_frequently, clusterPt_iff_lift'_closure', Filter.TotallyBounded.isCompact_setOf_clusterPt, ClusterPt.of_le_nhds', mem_interior_iff_not_clusterPt_compl, IsCompact.exists_clusterPt, mem_closure_iff_clusterPt, clusterPt_iff_frequently, clusterPt_iff_not_disjoint, tangentConeAt_def, isClosed_setOf_clusterPt, clusterPt_lift'_closure_iff, IsProperMap.clusterPt_of_mapClusterPt, exists_clusterPt_of_compactSpace, AccPt.clusterPt, ClusterPt.map, isComplete_iff_clusterPt, clusterPt_iff_nonempty, isClosedMap_iff_clusterPt, clusterPt_iff_forall_mem_closure, IsOpenMap.clusterPt_comap, specializes_iff_clusterPt, cluster_point_of_Lindelof, ClusterPt.of_nhds_le, inseparable_iff_clusterPt_uniformity, Filter.TotallyBounded.totallyBounded_setOf_clusterPt, clusterPt_iff_lift'_closure, clusterPt_principal, clusterPt_iff_ultrafilter, accPt_principal_iff_clusterPt, Filter.HasBasis.clusterPt_iff, IsCompact.exists_clusterPt_of_frequently, ClusterPt.of_inf_left, clusterPt_principal_iff_frequently, Topology.IsInducing.mapClusterPt_iff, accPt_iff_clusterPt, ClusterPt.of_inf_right, Filter.HasBasis.clusterPt_iff_forall_mem_closure, specializes_TFAE

Theorems

NameKindAssumesProvesValidatesDepends On
accPt_iff_clusterPt 📖mathematicalAccPt
ClusterPt
Filter
Filter.instInf
Filter.principal
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
AccPt.eq_1
nhdsWithin.eq_1
ClusterPt.eq_1
inf_assoc
accPt_iff_frequently 📖mathematicalAccPt
Filter.principal
Filter.Frequently
Set
Set.instMembership
nhds
accPt_iff_frequently_nhdsNE 📖mathematicalAccPt
Filter.principal
Filter.Frequently
Set
Set.instMembership
nhdsWithin
Compl.compl
Set.instCompl
Set.instSingletonSet
Filter.frequently_inf_principal
accPt_iff_frequently
accPt_iff_nhds 📖mathematicalAccPt
Filter.principal
Set
Set.instMembership
Set.instInter
accPt_principal_iff_clusterPt 📖mathematicalAccPt
Filter.principal
ClusterPt
Set
Set.instSDiff
Set.instSingletonSet
accPt_iff_clusterPt
Filter.inf_principal
Set.inter_comm
Set.diff_eq
accPt_principal_iff_nhdsWithin 📖mathematicalAccPt
Filter.principal
Filter.NeBot
nhdsWithin
Set
Set.instSDiff
Set.instSingletonSet
accPt_principal_iff_clusterPt
ClusterPt.eq_1
nhdsWithin.eq_1
accPt_sup 📖mathematicalAccPt
Filter
Filter.instSup
inf_sup_left
closure_compl_singleton 📖mathematicalclosure
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Set.univ
Dense.closure_eq
dense_compl_singleton
closure_eq_cluster_pts 📖mathematicalclosure
setOf
ClusterPt
Filter.principal
Set.ext
mem_closure_iff_clusterPt
clusterPt_iff_forall_mem_closure 📖mathematicalClusterPt
Set
Set.instMembership
closure
Filter.HasBasis.clusterPt_iff_forall_mem_closure
Filter.basis_sets
clusterPt_iff_frequently 📖mathematicalClusterPt
Filter.Frequently
Set
Set.instMembership
Filter.HasBasis.clusterPt_iff_frequently
Filter.basis_sets
clusterPt_iff_frequently' 📖mathematicalClusterPt
Filter.Frequently
Set
Set.instMembership
nhds
Filter.HasBasis.clusterPt_iff_frequently'
Filter.basis_sets
clusterPt_iff_lift'_closure 📖mathematicalClusterPt
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instPure
Filter.lift'
closure
Filter.HasBasis.le_basis_iff
Filter.hasBasis_pure
Filter.HasBasis.lift'_closure
Filter.basis_sets
clusterPt_iff_lift'_closure' 📖mathematicalClusterPt
Filter.NeBot
Filter
Filter.instInf
Filter.lift'
closure
Filter.instPure
clusterPt_iff_lift'_closure
inf_comm
inf_of_le_left
clusterPt_iff_nonempty 📖mathematicalClusterPt
Set.Nonempty
Set
Set.instInter
Filter.inf_neBot_iff
clusterPt_iff_not_disjoint 📖mathematicalClusterPt
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
disjoint_iff
ClusterPt.eq_1
Filter.neBot_iff
clusterPt_lift'_closure_iff 📖mathematicalClusterPt
Filter.lift'
closure
Filter.lift'_lift'_assoc
monotone_closure
IsClosed.closure_eq
clusterPt_principal 📖mathematicalClusterPt
Filter.principal
Set
Set.instMembership
AccPt
accPt_principal_iff_clusterPt
Set.diff_singleton_eq_self
clusterPt_principal_iff
mem_of_mem_nhds
AccPt.clusterPt
clusterPt_principal_iff 📖mathematicalClusterPt
Filter.principal
Set.Nonempty
Set
Set.instInter
Filter.inf_principal_neBot_iff
clusterPt_principal_iff_frequently 📖mathematicalClusterPt
Filter.principal
Filter.Frequently
Set
Set.instMembership
nhds
clusterPt_sup 📖mathematicalClusterPt
Filter
Filter.instSup
inf_sup_left
dense_compl_singleton 📖mathematicalDense
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
eq_or_ne
mem_closure_iff_nhdsWithin_neBot
subset_closure
interior_singleton 📖mathematicalinterior
Set
Set.instSingletonSet
Set.instEmptyCollection
interior_eq_empty_iff_dense_compl
dense_compl_singleton
isClosed_iff_clusterPt 📖mathematicalIsClosed
Set
Set.instMembership
closure_subset_iff_isClosed
isClosed_iff_forall_filter 📖mathematicalIsClosed
Set
Set.instMembership
Filter.NeBot.mono
le_inf
inf_le_right
inf_le_left
isClosed_iff_nhds 📖mathematicalIsClosed
Set
Set.instMembership
isClosed_setOf_clusterPt 📖mathematicalIsClosed
setOf
ClusterPt
Set.setOf_forall
isClosed_biInter
isClosed_closure
mapClusterPt_comp 📖mathematicalMapClusterPt
Filter.map
mapClusterPt_def 📖mathematicalMapClusterPt
ClusterPt
Filter.map
mapClusterPt_id_iff 📖mathematicalMapClusterPt
ClusterPt
MapClusterPt.eq_1
Filter.map_id
mapClusterPt_iff_frequently 📖mathematicalMapClusterPt
Filter.Frequently
Set
Set.instMembership
Filter.HasBasis.mapClusterPt_iff_frequently
Filter.basis_sets
mem_closure_iff_clusterPt 📖mathematicalSet
Set.instMembership
closure
ClusterPt
Filter.principal
mem_closure_iff_frequently
clusterPt_principal_iff_frequently
mem_closure_iff_comap_neBot 📖mathematicalSet
Set.instMembership
closure
Filter.NeBot
Filter.comap
nhds
mem_closure_iff_nhds 📖mathematicalSet
Set.instMembership
closure
Set.Nonempty
Set.instInter
mem_closure_iff_clusterPt
clusterPt_principal_iff
mem_closure_iff_nhds' 📖mathematicalSet
Set.instMembership
closure
mem_closure_iff_nhdsWithin_neBot 📖mathematicalSet
Set.instMembership
closure
Filter.NeBot
nhdsWithin
mem_closure_iff_clusterPt
mem_closure_iff_nhds_basis 📖mathematicalFilter.HasBasis
nhds
Set
Set.instMembership
closure
mem_closure_iff_nhds_basis'
mem_closure_iff_nhds_basis' 📖mathematicalFilter.HasBasis
nhds
Set
Set.instMembership
closure
Set.Nonempty
Set.instInter
mem_closure_iff_clusterPt
Filter.HasBasis.clusterPt_iff
Filter.hasBasis_principal
mem_closure_iff_nhds_ne_bot 📖mathematicalSet
Set.instMembership
closure
mem_closure_iff_clusterPt
Filter.neBot_iff
mem_closure_of_mem_closure_union 📖Set
Set.instMembership
closure
Set.instUnion
Filter
Filter.instMembership
nhds
Compl.compl
Set.instCompl
mem_closure_iff_nhds_ne_bot
bot_sup_eq
Filter.inf_principal_eq_bot
inf_sup_left
Filter.sup_principal
mem_interior_iff_not_clusterPt_compl 📖mathematicalSet
Set.instMembership
interior
ClusterPt
Filter.principal
Compl.compl
Set.instCompl
mem_closure_iff_clusterPt
closure_compl
Set.mem_compl_iff
notMem_closure_iff_nhdsWithin_eq_bot 📖mathematicalSet
Set.instMembership
closure
nhdsWithin
Bot.bot
Filter
Filter.instBot
mem_closure_iff_nhdsWithin_neBot
Filter.not_neBot
not_isOpen_singleton 📖mathematicalIsOpen
Set
Set.instSingletonSet
dense_compl_singleton_iff_not_open
dense_compl_singleton

---

← Back to Index