Documentation Verification Report

CompactOpen

πŸ“ Source: Mathlib/Topology/CompactOpen.lean

Statistics

MetricCount
Definitionscoev, compRightContinuousMap, compactOpen, const', curry, homeoFnOfDiscrete, uncurry, arrowCongr, continuousMapOfUnique, curry
10
TheoremscompCM, compCM, coe_const', coe_homeoFnOfDiscrete, coev_apply, compRightContinuousMap_apply, compactOpen_eq, compactOpen_eq_iInf_induced, compactOpen_le_induced, continuousOn_mkD_of_uncurry, continuousOn_mkD_restrict_of_uncurry, continuousOn_of_continuousOn_uncurry, continuous_coev, continuous_comp', continuous_compactOpen, continuous_const', continuous_curry, continuous_mkD_of_uncurry, continuous_mkD_restrict_of_uncurry, continuous_of_continuous_uncurry, continuous_postcomp, continuous_precomp, continuous_prodMk_const, continuous_restrict, continuous_uncurry, continuous_uncurry_of_continuous, curry_apply, eventually_mapsTo, eventually_range_subset, exists_tendsto_compactOpen_iff_forall, hasBasis_nhds, homeoFnOfDiscrete_apply, homeoFnOfDiscrete_symm_apply, homeoFnOfDiscrete_symm_apply_apply, image_coev, inseparable_coe, instContinuousEvalConst, instContinuousEvalOfLocallyCompactPair, instR0Space, instR1Space, instRegularSpace, instT0Space, instT1Space, instT2Space, instT3Space, isClopen_setOf_mapsTo, isClosed_setOf_mapsTo, isEmbedding_postcomp, isHomeomorph_coe, isInducing_postcomp, isOpen_setOf_mapsTo, isOpen_setOf_range_subset, mem_nhds_iff, nhds_compactOpen, nhds_compactOpen_eq_iInf_nhds_induced, specializes_coe, tendsto_compactOpen_iff_forall, tendsto_compactOpen_restrict, tendsto_nhds_compactOpen, toEquiv_homeoFnOfDiscrete, uncurry_apply, compCM, compCM, nhds_continuousMapConst, compCM, continuousMapOfUnique_apply, continuousMapOfUnique_symm_apply, continuous_lift_prod_left, continuous_lift_prod_right
69
Total79

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
compCM πŸ“–mathematicalContinuous
ContinuousMap
ContinuousMap.compactOpen
ContinuousMap.compβ€”comp
ContinuousMap.continuous_comp'
prodMk

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
compCM πŸ“–mathematicalContinuousAt
ContinuousMap
ContinuousMap.compactOpen
ContinuousMap.compβ€”Filter.Tendsto.compCM

ContinuousMap

Definitions

NameCategoryTheorems
coev πŸ“–CompOp
3 mathmath: coev_apply, continuous_coev, image_coev
compRightContinuousMap πŸ“–CompOp
1 mathmath: compRightContinuousMap_apply
compactOpen πŸ“–CompOp
202 mathmath: dense_setOf_contDiff, toLp_inj, instContinuousVAdd, instContinuousEvalOfLocallyCompactPair, compactOpen_eq_iInf_induced, Matrix.IsHermitian.isClosedEmbedding_cfcAux, instIsTopologicalGroup, Real.fourierCoeff_tsum_comp_add, ContinuousMapZero.isEmbedding_toContinuousMap, abs_mem_subalgebra_closure, hasBasis_nhds, ArzelaAscoli.isCompact_of_equicontinuous, Homotopy.extend_apply_of_one_le, span_fourier_closure_eq_top, continuous_prodMk_const, GenLoop.fromLoop_apply, toEquiv_homeoFnOfDiscrete, toLp_denseRange, ContinuousMonoidHom.isInducing_toContinuousMap, range_toLp, isOpen_setOf_mapsTo, specializes_coe, continuousMap_mem_subalgebra_closure_of_separatesPoints, UnitAddTorus.mFourierSubalgebra_closure_eq_top, summable_of_locally_summable_norm, cfcHom_continuous, polynomialFunctions.starClosure_topologicalClosure, instContinuousMulOfLocallyCompactSpace, cfcL_apply, toLp_norm_le, GenLoop.homotopyTo_apply, mem_nhds_iff, concatCM_left, continuous_postcomp, cfcHom_isClosedEmbedding, continuous_iff_continuous_uniformOnFun, continuous_compactOpen, GenLoop.loopHomeo_apply, UnitAddTorus.mFourierCoeff_toLp, coe_homeoFnOfDiscrete, ContinuousCohomology.I_obj_ρ_apply, isInducing_postcomp, continuous_toNNReal, Homotopy.pathExtend_evalAt, Homeomorph.continuousMapOfUnique_apply, ContinuousLinearMap.const_apply_apply, WeakDual.CharacterSpace.continuousMapEval_bijective, continuous_of_continuous_uncurry, continuousMap_mem_polynomialFunctions_closure, idealOfSet_closed, tendsto_of_antitone_of_pointwise, instT1Space, instPseudoMetrizableSpace, GenLoop.instContinuousEval, instIsTopologicalAddGroup, WeakDual.CharacterSpace.homeoEval_naturality, coe_const', Path.Homotopy.eval_apply, homeoFnOfDiscrete_symm_apply, inseparable_coe, compactOpen_eq, NormedSpace.exp_continuousMap_eq, continuousOn_mkD_of_uncurry, isEmbedding_sigmaMk_comp, aeStronglyMeasurable_restrict_mkD_restrict_of_uncurry, uncurry_apply, ContinuousFunctionalCalculus.exists_cfc_of_predicate, periodic_tsum_comp_add_zsmul, evalCLM_apply, Homotopy.extend_apply_coe, toLp_def, GenLoop.continuous_fromLoop, tendsto_of_monotone_of_pointwise, ContinuousMapZero.toContinuousMapCLM_apply, GenLoop.toLoop_apply, nhds_compactOpen_eq_iInf_nhds_induced, toLp_norm_eq_toLp_norm_coe, GenLoop.fromLoop_symm_toLoop, sup_mem_subalgebra_closure, fourierCoeff_toLp, ContinuousAddMonoidHom.isClosedEmbedding_toContinuousMap, homeoFnOfDiscrete_apply, Homeomorph.continuousMapOfUnique_symm_apply, instContinuousConstVAdd, inf_mem_subalgebra_closure, continuous_const', ContinuousLinearMap.compLeftContinuous_apply, continuousOn_of_continuousOn_uncurry, continuous_iff_continuous_uniformFun, sublattice_closure_eq_top, tendsto_iff_tendstoUniformly, ContinuousCohomology.I_map_hom, Trivialization.clift_self, instIsTopologicalSemiringOfLocallyCompactSpace, ContinuousAddMonoidHom.isInducing_toContinuousMap, cfc_eq_cfcL_mkD, instT3Space, HomotopyWith.extendProp, aeStronglyMeasurable_mkD_restrict_of_uncurry, Homotopy.curry_apply, tendsto_iff_forall_isCompact_tendstoUniformlyOn, continuous_coev, Trivialization.proj_clift, instContinuousSMul, continuous_restrict, Homotopy.extend_apply_of_mem_I, GenLoop.toLoop_apply_coe, continuous_uncurry, curry_apply, PadicInt.hasSum_mahlerSeries, ContinuousOn.continuous_restrict_iff_continuous_uniformOnFun, GenLoop.loopHomeo_symm_apply, subalgebra_topologicalClosure_eq_top_of_separatesPoints, aeStronglyMeasurable_restrict_mkD_of_uncurry, toLp_injective, UnitAddTorus.hasSum_mFourier_series_of_summable, PadicInt.hasSum_mahler, isHomeomorph_coe, coe_toLp, instT2Space, eventually_mapsTo, instContinuousEvalConst, continuous_uncurry_of_continuous, Homotopy.extend_of_mem_I, instIsTopologicalRingOfLocallyCompactSpace, ContinuousMonoidHom.isEmbedding_toContinuousMap, tendsto_iff_tendstoLocallyUniformly, exists_tendsto_compactOpen_iff_forall, sigmaCodHomeomorph_symm_apply, coeFn_toLp, instSecondCountableTopology, toLp_comp_toContinuousMap, comp_attachBound_mem_closure, instRegularSpace, ContinuousAddMonoidHom.isEmbedding_toContinuousMap, secondCountableTopology, continuousOn_mkD_restrict_of_uncurry, tendsto_compactOpen_iff_forall, continuous_mkD_restrict_of_uncurry, hasSum_fourier_series_of_summable, instLocallyConvexSpace, ContinuousMonoidHom.isClosedEmbedding_toContinuousMap, HomotopyWith.prop, continuous_comp', Homotopy.extend_zero, isEmbedding_postcomp, bernsteinApproximation_uniform, tendsto_of_tendstoLocallyUniformly, tendsto_nhds_compactOpen, fourierSubalgebra_closure_eq_top, ContinuousCohomology.I_obj_V_topologicalSpace, cfc_eq_cfcL, polynomialFunctions.topologicalClosure, concatCM_right, WeakDual.CharacterSpace.continuousMapEval_apply_apply, UnitAddTorus.span_mFourier_closure_eq_top, homeoFnOfDiscrete_symm_apply_apply, IccExtendCM_of_mem, instContinuousConstSMul, continuous_precomp, isOpen_setOf_range_subset, aeStronglyMeasurable_mkD_of_uncurry, Filter.HasBasis.nhds_continuousMapConst, instContinuousAddOfLocallyCompactSpace, ContinuousOn.tendsto_restrict_iff_tendstoUniformlyOn, cfcHomSuperset_continuous, compRightAlgHom_continuous, MeasureTheory.Lp.compMeasurePreserving_continuous, isClosed_setOf_mapsTo, elemental_id_eq_top, polynomialFunctions_closure_eq_top', compRightContinuousMap_apply, eventually_range_subset, nhds_compactOpen, compactOpen_le_induced, ker_evalStarAlgHom_eq_closure_adjoin_id, Homotopy.extend_one, starSubalgebra_topologicalClosure_eq_top_of_separatesPoints, instR0Space, Homotopy.curry_one, MeasureTheory.ContinuousMap.inner_toLp, Homotopy.extend_apply_of_le_zero, instR1Space, polynomialFunctions_closure_eq_top, continuous_curry, instT0Space, GenLoop.homotopyFrom_apply, ContinuousCohomology.const_app_hom, GenLoop.fromLoop_coe, GenLoop.homotopicTo, idealOfSet_ofIdeal_eq_closure, continuous_mkD_of_uncurry, instMetrizableSpace, GenLoop.continuous_toLoop, GenLoop.fromLoop_trans_toLoop, compactOpen_eq_generateFrom, instSeparableSpace, idealOpensGI_choice, ContinuousMapZero.isClosedEmbedding_toContinuousMap, isClopen_setOf_mapsTo, GenLoop.instContinuousEvalConst, Homotopy.curry_zero
const' πŸ“–CompOp
1 mathmath: coe_const'
curry πŸ“–CompOp
3 mathmath: GenLoop.toLoop_apply_coe, curry_apply, continuous_curry
homeoFnOfDiscrete πŸ“–CompOp
5 mathmath: toEquiv_homeoFnOfDiscrete, coe_homeoFnOfDiscrete, homeoFnOfDiscrete_symm_apply, homeoFnOfDiscrete_apply, homeoFnOfDiscrete_symm_apply_apply
uncurry πŸ“–CompOp
3 mathmath: uncurry_apply, continuous_uncurry, GenLoop.fromLoop_coe

Theorems

NameKindAssumesProvesValidatesDepends On
coe_const' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
compactOpen
instFunLike
const'
const
β€”β€”
coe_homeoFnOfDiscrete πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
ContinuousMap
compactOpen
Pi.topologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
homeoFnOfDiscrete
instFunLike
β€”β€”
coev_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instTopologicalSpaceProd
instFunLike
coev
β€”β€”
compRightContinuousMap_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
compactOpen
instFunLike
compRightContinuousMap
comp
β€”β€”
compactOpen_eq πŸ“–mathematicalβ€”compactOpen
TopologicalSpace.generateFrom
ContinuousMap
Set.image2
Set
setOf
Set.MapsTo
DFunLike.coe
instFunLike
IsCompact
IsOpen
β€”β€”
compactOpen_eq_iInf_induced πŸ“–mathematicalβ€”compactOpen
iInf
TopologicalSpace
ContinuousMap
Set
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
IsCompact
TopologicalSpace.induced
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
restrict
β€”le_antisymm
le_iInfβ‚‚
compactOpen_le_induced
le_generateFrom
Set.forall_mem_image2
TopologicalSpace.le_def
iInfβ‚‚_le
isOpen_induced
isOpen_setOf_mapsTo
isCompact_iff_isCompact_univ
compactOpen_le_induced πŸ“–mathematicalβ€”TopologicalSpace
ContinuousMap
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
compactOpen
TopologicalSpace.induced
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
restrict
β€”Continuous.le_induced
continuous_restrict
continuousOn_mkD_of_uncurry πŸ“–mathematicalContinuousOn
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
Set.univ
ContinuousMap
compactOpen
mkD
β€”ContinuousOn.comp_continuous
Continuous.prodMk_right
Set.restrict_def
continuous_of_continuous_uncurry
mkD_of_continuous
Continuous.prodMap
continuous_subtype_val
continuous_id
continuousOn_mkD_restrict_of_uncurry πŸ“–mathematicalContinuousOn
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
compactOpen
mkD
Set.restrict
β€”ContinuousOn.comp
Continuous.continuousOn
Continuous.prodMk_right
Set.restrict_def
continuous_of_continuous_uncurry
ContinuousOn.restrict
mkD_of_continuousOn
ContinuousOn.comp_continuous
Continuous.prodMap
continuous_subtype_val
continuousOn_of_continuousOn_uncurry πŸ“–mathematicalContinuousOn
instTopologicalSpaceProd
DFunLike.coe
ContinuousMap
instFunLike
SProd.sprod
Set
Set.instSProd
Set.univ
compactOpenβ€”continuousOn_iff_continuous_restrict
continuous_of_continuous_uncurry
ContinuousOn.comp_continuous
Continuous.prodMap
continuous_subtype_val
continuous_id
continuous_coev πŸ“–mathematicalβ€”Continuous
ContinuousMap
instTopologicalSpaceProd
compactOpen
coev
β€”Continuous.comp
continuous_prodMk_const
Continuous.prodMk
continuous_id
continuous_const
continuous_comp' πŸ“–mathematicalβ€”Continuous
ContinuousMap
instTopologicalSpaceProd
compactOpen
comp
β€”exists_mem_nhdsSet_isCompact_mapsTo
continuous
IsCompact.image
Set.mapsTo_image_iff
Filter.Eventually.mono
Filter.Eventually.prod_nhds
eventually_mapsTo
isOpen_interior
Set.mapsTo_iff_image_subset
subset_interior_iff_mem_nhdsSet
Set.MapsTo.comp
Set.MapsTo.mono_right
interior_subset
continuous_compactOpen πŸ“–mathematicalβ€”Continuous
ContinuousMap
compactOpen
IsOpen
setOf
Set.MapsTo
DFunLike.coe
instFunLike
β€”continuous_generateFrom_iff
Set.forall_mem_image2
continuous_const' πŸ“–mathematicalβ€”Continuous
ContinuousMap
compactOpen
const
β€”continuous
continuous_curry πŸ“–mathematicalβ€”Continuous
ContinuousMap
instTopologicalSpaceProd
compactOpen
curry
β€”continuous_of_continuous_uncurry
Homeomorph.comp_continuous_iff'
ContinuousEval.continuous_eval
instContinuousEvalOfLocallyCompactPair
instLocallyCompactPairOfLocallyCompactSpace
continuous_mkD_of_uncurry πŸ“–mathematicalContinuous
instTopologicalSpaceProd
ContinuousMap
compactOpen
mkD
β€”Continuous.comp
Continuous.prodMk_right
continuous_of_continuous_uncurry
mkD_of_continuous
continuous_mkD_restrict_of_uncurry πŸ“–mathematicalContinuousOn
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
Set.univ
Continuous
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
compactOpen
mkD
Set.restrict
β€”ContinuousOn.comp
Continuous.continuousOn
Continuous.prodMk_right
continuous_of_continuous_uncurry
ContinuousOn.restrict
mkD_of_continuousOn
ContinuousOn.comp_continuous
Continuous.prodMap
continuous_id
continuous_subtype_val
continuous_of_continuous_uncurry πŸ“–mathematicalContinuous
instTopologicalSpaceProd
DFunLike.coe
ContinuousMap
instFunLike
compactOpenβ€”continuous_toFun
continuous_postcomp πŸ“–mathematicalβ€”Continuous
ContinuousMap
compactOpen
comp
β€”continuous_compactOpen
isOpen_setOf_mapsTo
IsOpen.preimage
continuous_toFun
continuous_precomp πŸ“–mathematicalβ€”Continuous
ContinuousMap
compactOpen
comp
β€”continuous_compactOpen
isOpen_setOf_mapsTo
IsCompact.image
continuous_toFun
continuous_prodMk_const πŸ“–mathematicalβ€”Continuous
ContinuousMap
instTopologicalSpaceProd
compactOpen
prodMk
const
β€”generalized_tube_lemma
isCompact_singleton
IsCompact.image
continuous
Filter.eventually_of_mem
prod_mem_nhds
IsOpen.mem_nhds
eventually_mapsTo
Set.mapsTo_iff_image_subset
Set.mk_mem_prod
continuous_restrict πŸ“–mathematicalβ€”Continuous
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
compactOpen
restrict
β€”continuous_precomp
continuous_uncurry πŸ“–mathematicalβ€”Continuous
ContinuousMap
compactOpen
instTopologicalSpaceProd
uncurry
β€”continuous_of_continuous_uncurry
Homeomorph.comp_continuous_iff'
Continuous.eval
instContinuousEvalOfLocallyCompactPair
instLocallyCompactPairOfLocallyCompactSpace
Continuous.fst
continuous_fst
Continuous.snd
continuous_snd
continuous_uncurry_of_continuous πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceProd
DFunLike.coe
ContinuousMap
instFunLike
compactOpen
β€”Continuous.comp
ContinuousEval.continuous_eval
instContinuousEvalOfLocallyCompactPair
instLocallyCompactPairOfLocallyCompactSpace
Continuous.prodMap
continuous
continuous_id
curry_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
compactOpen
curry
instTopologicalSpaceProd
β€”β€”
eventually_mapsTo πŸ“–mathematicalIsCompact
IsOpen
Set.MapsTo
DFunLike.coe
ContinuousMap
instFunLike
Filter.Eventually
nhds
compactOpen
β€”IsOpen.mem_nhds
isOpen_setOf_mapsTo
eventually_range_subset πŸ“–mathematicalIsOpen
Set
Set.instHasSubset
Set.range
DFunLike.coe
ContinuousMap
instFunLike
Filter.Eventually
nhds
compactOpen
β€”IsOpen.mem_nhds
isOpen_setOf_range_subset
exists_tendsto_compactOpen_iff_forall πŸ“–mathematicalβ€”Filter.Tendsto
ContinuousMap
nhds
compactOpen
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
restrict
β€”tendsto_compactOpen_restrict
Filter.Tendsto.comp
ContinuousAt.tendsto
Continuous.continuousAt
ContinuousEvalConst.continuous_eval_const
instContinuousEvalConst
tendsto_nhds_unique
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
tendsto_compactOpen_iff_forall
liftCover_restrict'
hasBasis_nhds πŸ“–mathematicalβ€”Filter.HasBasis
ContinuousMap
Set
nhds
compactOpen
Set.Finite
Set.iInter
Set.instMembership
setOf
Set.MapsTo
DFunLike.coe
instFunLike
β€”nhds_compactOpen
iInf_comm
iInf_prod'
iInf_congr_Prop
iInf_and'
homeoFnOfDiscrete_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
ContinuousMap
compactOpen
Pi.topologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
homeoFnOfDiscrete
instFunLike
β€”β€”
homeoFnOfDiscrete_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
Homeomorph
Pi.topologicalSpace
compactOpen
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
homeoFnOfDiscrete
β€”β€”
homeoFnOfDiscrete_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
Homeomorph
Pi.topologicalSpace
compactOpen
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
homeoFnOfDiscrete
β€”β€”
image_coev πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousMap
instTopologicalSpaceProd
instFunLike
coev
SProd.sprod
Set
Set.instSProd
Set.instSingletonSet
β€”Set.image_congr
Set.singleton_prod
inseparable_coe πŸ“–mathematicalβ€”Inseparable
Pi.topologicalSpace
DFunLike.coe
ContinuousMap
instFunLike
compactOpen
β€”β€”
instContinuousEvalConst πŸ“–mathematicalβ€”ContinuousEvalConst
ContinuousMap
instFunLike
compactOpen
β€”continuous_def
isOpen_setOf_mapsTo
isCompact_singleton
instContinuousEvalOfLocallyCompactPair πŸ“–mathematicalβ€”ContinuousEval
ContinuousMap
instFunLike
compactOpen
β€”Filter.HasBasis.tendsto_right_iff
nhds_basis_opens
LocallyCompactPair.exists_mem_nhds_isCompact_mapsTo
continuous
IsOpen.mem_nhds
Filter.mp_mem
prod_mem_nhds
eventually_mapsTo
Filter.univ_mem'
instR0Space πŸ“–mathematicalβ€”R0Space
ContinuousMap
compactOpen
β€”specializes_coe
Specializes.symm
instR0SpaceForall
instR1Space πŸ“–mathematicalβ€”R1Space
ContinuousMap
compactOpen
β€”R1Space.of_continuous_specializes_imp
instR1SpaceForall
continuous_coeFun
instContinuousEvalConst
specializes_coe
instRegularSpace πŸ“–mathematicalβ€”RegularSpace
ContinuousMap
compactOpen
β€”RegularSpace.of_lift'_closure_le
Filter.tendsto_id'
tendsto_nhds_compactOpen
IsCompact.exists_isOpen_closure_subset
IsCompact.image
continuous
IsOpen.mem_nhdsSet
Set.MapsTo.image_subset
Filter.mp_mem
Filter.mem_lift'
eventually_mapsTo
Set.mapsTo_iff_image_subset
Filter.univ_mem'
Set.MapsTo.mono_right
IsClosed.closure_subset
isClosed_setOf_mapsTo
isClosed_closure
closure_mono
subset_closure
instT0Space πŸ“–mathematicalβ€”T0Space
ContinuousMap
compactOpen
β€”t0Space_of_injective_of_continuous
DFunLike.coe_injective
continuous_coeFun
instContinuousEvalConst
Pi.instT0Space
instT1Space πŸ“–mathematicalβ€”T1Space
ContinuousMap
compactOpen
β€”t1Space_of_injective_of_continuous
DFunLike.coe_injective
continuous_coeFun
instContinuousEvalConst
instT1SpaceForall
instT2Space πŸ“–mathematicalβ€”T2Space
ContinuousMap
compactOpen
β€”instT2SpaceOfR1SpaceOfT0Space
instR1Space
T2Space.r1Space
instT0Space
T1Space.t0Space
T2Space.t1Space
instT3Space πŸ“–mathematicalβ€”T3Space
ContinuousMap
compactOpen
β€”instT3Space
instT0Space
T3Space.toT0Space
instRegularSpace
T3Space.toRegularSpace
isClopen_setOf_mapsTo πŸ“–mathematicalIsCompact
IsClopen
ContinuousMap
compactOpen
setOf
Set.MapsTo
DFunLike.coe
instFunLike
β€”isClosed_setOf_mapsTo
IsClopen.isClosed
isOpen_setOf_mapsTo
IsClopen.isOpen
isClosed_setOf_mapsTo πŸ“–mathematicalβ€”IsClosed
ContinuousMap
compactOpen
setOf
Set.MapsTo
DFunLike.coe
instFunLike
β€”IsClosed.setOf_mapsTo
ContinuousEvalConst.continuous_eval_const
instContinuousEvalConst
isEmbedding_postcomp πŸ“–mathematicalTopology.IsEmbedding
DFunLike.coe
ContinuousMap
instFunLike
compactOpen
comp
β€”isInducing_postcomp
Topology.IsEmbedding.toIsInducing
cancel_left
Topology.IsEmbedding.injective
isHomeomorph_coe πŸ“–mathematicalβ€”IsHomeomorph
ContinuousMap
compactOpen
Pi.topologicalSpace
DFunLike.coe
instFunLike
β€”Homeomorph.isHomeomorph
isInducing_postcomp πŸ“–mathematicalTopology.IsInducing
DFunLike.coe
ContinuousMap
instFunLike
compactOpen
comp
β€”Set.image2_congr
Topology.IsInducing.setOf_isOpen
Set.image2_image_right
induced_generateFrom_eq
Set.image_image2
isOpen_setOf_mapsTo πŸ“–mathematicalIsCompact
IsOpen
ContinuousMap
compactOpen
setOf
Set.MapsTo
DFunLike.coe
instFunLike
β€”TopologicalSpace.isOpen_generateFrom_of_mem
Set.mem_image2_of_mem
isOpen_setOf_range_subset πŸ“–mathematicalIsOpenContinuousMap
compactOpen
setOf
Set
Set.instHasSubset
Set.range
DFunLike.coe
instFunLike
β€”isOpen_setOf_mapsTo
isCompact_univ
mem_nhds_iff πŸ“–mathematicalβ€”Set
ContinuousMap
Filter
Filter.instMembership
nhds
compactOpen
Set.Finite
IsCompact
IsOpen
Set.MapsTo
DFunLike.coe
instFunLike
Set.instHasSubset
setOf
β€”Filter.HasBasis.mem_iff
hasBasis_nhds
nhds_compactOpen πŸ“–mathematicalβ€”nhds
ContinuousMap
compactOpen
iInf
Filter
Set
Filter.instInfSet
IsCompact
IsOpen
Set.MapsTo
DFunLike.coe
instFunLike
Filter.principal
setOf
β€”TopologicalSpace.nhds_generateFrom
iInf_congr_Prop
iInf_and
iInf_image
biInf_prod
nhds_compactOpen_eq_iInf_nhds_induced πŸ“–mathematicalβ€”nhds
ContinuousMap
compactOpen
iInf
Filter
Set
Filter.instInfSet
IsCompact
Filter.comap
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
restrict
β€”compactOpen_eq_iInf_induced
nhds_iInf
iInf_congr_Prop
nhds_induced
specializes_coe πŸ“–mathematicalβ€”Specializes
Pi.topologicalSpace
DFunLike.coe
ContinuousMap
instFunLike
compactOpen
β€”Specializes.mem_open
Specializes.map
continuous_apply
nhds_compactOpen
continuous_coeFun
instContinuousEvalConst
tendsto_compactOpen_iff_forall πŸ“–mathematicalβ€”Filter.Tendsto
ContinuousMap
nhds
compactOpen
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
restrict
β€”compactOpen_eq_iInf_induced
nhds_iInf
iInf_congr_Prop
nhds_induced
tendsto_compactOpen_restrict πŸ“–mathematicalFilter.Tendsto
ContinuousMap
nhds
compactOpen
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
restrict
β€”Filter.Tendsto.comp
ContinuousAt.tendsto
Continuous.continuousAt
continuous_restrict
tendsto_nhds_compactOpen πŸ“–mathematicalβ€”Filter.Tendsto
ContinuousMap
nhds
compactOpen
Filter.Eventually
Set.MapsTo
DFunLike.coe
instFunLike
β€”nhds_compactOpen
toEquiv_homeoFnOfDiscrete πŸ“–mathematicalβ€”Homeomorph.toEquiv
ContinuousMap
compactOpen
Pi.topologicalSpace
homeoFnOfDiscrete
equivFnOfDiscrete
β€”β€”
uncurry_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instTopologicalSpaceProd
instFunLike
uncurry
compactOpen
β€”β€”

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
compCM πŸ“–mathematicalContinuousOn
ContinuousMap
ContinuousMap.compactOpen
ContinuousMap.compβ€”ContinuousWithinAt.compCM

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
compCM πŸ“–mathematicalContinuousWithinAt
ContinuousMap
ContinuousMap.compactOpen
ContinuousMap.compβ€”Filter.Tendsto.compCM

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
nhds_continuousMapConst πŸ“–mathematicalFilter.HasBasis
nhds
ContinuousMap
Set
ContinuousMap.compactOpen
ContinuousMap.const
IsCompact
setOf
Set.MapsTo
DFunLike.coe
ContinuousMap.instFunLike
β€”ContinuousMap.mem_nhds_iff
Filter.biInter_mem
instFiniteProp
IsOpen.mem_nhds
mem_iff
Set.Finite.isCompact_biUnion
Set.Subset.trans
Set.eq_empty_or_nonempty
Set.mapsTo_empty
Set.MapsTo.mono
Membership.mem.out
Set.subset_biUnion_of_mem
HasSubset.Subset.trans
Set.instIsTransSubset
Set.biInter_subset_of_mem
Set.iInter_subset
Filter.mp_mem
ContinuousMap.eventually_mapsTo
isOpen_interior
mem_interior_iff_mem_nhds
mem_of_mem
Filter.univ_mem'
Set.MapsTo.mono_right
interior_subset

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
compCM πŸ“–mathematicalFilter.Tendsto
ContinuousMap
nhds
ContinuousMap.compactOpen
ContinuousMap.compβ€”comp
Continuous.tendsto
ContinuousMap.continuous_comp'
prodMk_nhds

Homeomorph

Definitions

NameCategoryTheorems
arrowCongr πŸ“–CompOpβ€”
continuousMapOfUnique πŸ“–CompOp
2 mathmath: continuousMapOfUnique_apply, continuousMapOfUnique_symm_apply
curry πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
continuousMapOfUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Homeomorph
ContinuousMap.compactOpen
EquivLike.toFunLike
instEquivLike
continuousMapOfUnique
β€”β€”
continuousMapOfUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
ContinuousMap
ContinuousMap.compactOpen
EquivLike.toFunLike
instEquivLike
symm
continuousMapOfUnique
ContinuousMap.instFunLike
Unique.instInhabited
β€”β€”

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_lift_prod_left πŸ“–β€”Topology.IsQuotientMap
Continuous
instTopologicalSpaceProd
β€”β€”surjective
ContinuousMap.continuous
continuous_iff
ContinuousMap.continuous_uncurry_of_continuous
continuous_lift_prod_right πŸ“–β€”Topology.IsQuotientMap
Continuous
instTopologicalSpaceProd
β€”β€”Continuous.comp
continuous_swap
continuous_lift_prod_left

---

← Back to Index