Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Compactification/OnePoint/Basic.lean

Statistics

MetricCount
DefinitionsonePointCongr, OnePoint, continuousMapDiscreteEquiv, continuousMapMk, continuousMapMkDiscrete, continuousMapMkNat, continuousMapNatEquiv, elim, equivOfIsEmbeddingOfRangeEq, infty, instCoeTC, instFintype, instInhabited, instTopologicalSpace, map, opensOfCompl, rec, some, «term∞», instReprOnePoint
20
Theoremst1_counterexample, onePointCongr_apply, onePointCongr_symm_apply, canLift, coe_eq_coe, coe_injective, coe_ne_infty, coe_preimage_infty, comap_coe_nhds, comap_coe_nhds_infty, compl_image_coe, compl_infty, compl_range_coe, continuousAt_coe, continuousAt_infty, continuousAt_infty', continuous_coe, continuous_iff, continuous_iff_from_discrete, continuous_iff_from_nat, continuous_map, continuous_map_iff, denseRange_coe, elim_infty, elim_some, equivOfIsEmbeddingOfRangeEq_apply_coe, equivOfIsEmbeddingOfRangeEq_apply_infty, exists, forall, hasBasis_nhds_infty, infinite, infty_mem_opensOfCompl, infty_ne_coe, infty_notMem_image_coe, infty_notMem_range_coe, inseparable_coe, inseparable_iff, insert_infty_range_coe, instCompactSpace, instConnectedSpaceOfPreconnectedSpaceOfNoncompactSpace, instNormalSpaceOfWeaklyLocallyCompactSpaceOfR1Space, instT0Space, instT1Space, instTotallySeparatedSpaceOfDiscreteTopology, isClosed_iff_of_mem, isClosed_iff_of_notMem, isClosed_image_coe, isClosed_infty, isCompl_range_coe_infty, isDenseEmbedding_coe, isOpenEmbedding_coe, isOpenMap_coe, isOpen_compl_image_coe, isOpen_def, isOpen_iff_of_mem, isOpen_iff_of_mem', isOpen_iff_of_notMem, isOpen_image_coe, isOpen_range_coe, le_nhds_infty, map_comp, map_id, map_infty, map_some, ne_infty_iff_exists, nhdsNE_coe_neBot, nhdsNE_infty_eq, nhdsNE_infty_neBot, nhdsNE_neBot, nhdsWithin_coe, nhdsWithin_coe_image, nhds_coe_eq, nhds_infty_eq, notMem_range_coe_iff, not_continuous_cofiniteTopology_of_symm, not_inseparable_coe_infty, not_inseparable_infty_coe, not_specializes_infty_coe, range_coe_inter_infty, range_coe_union_infty, some_eq_iff, specializes_coe, tendsto_coe_infty, tendsto_nhds_infty, tendsto_nhds_infty', ultrafilter_le_nhds_infty
86
Total106

Continuous.homeoOfEquivCompactToT2

Theorems

NameKindAssumesProvesValidatesDepends On
t1_counterexample πŸ“–mathematicalβ€”CompactSpace
T1Space
Continuous
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”OnePoint.instCompactSpace
instT1SpaceCofiniteTopology
CofiniteTopology.continuous_of
OnePoint.instT1Space
T2Space.t1Space
DiscreteTopology.toT2Space
instDiscreteTopologyNat
OnePoint.not_continuous_cofiniteTopology_of_symm
instInfiniteNat

Homeomorph

Definitions

NameCategoryTheorems
onePointCongr πŸ“–CompOp
2 mathmath: onePointCongr_symm_apply, onePointCongr_apply

Theorems

NameKindAssumesProvesValidatesDepends On
onePointCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
OnePoint
OnePoint.instTopologicalSpace
EquivLike.toFunLike
instEquivLike
onePointCongr
OnePoint.map
β€”β€”
onePointCongr_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
OnePoint
OnePoint.instTopologicalSpace
EquivLike.toFunLike
instEquivLike
symm
onePointCongr
OnePoint.map
β€”β€”

OnePoint

Definitions

NameCategoryTheorems
continuousMapDiscreteEquiv πŸ“–CompOpβ€”
continuousMapMk πŸ“–CompOpβ€”
continuousMapMkDiscrete πŸ“–CompOpβ€”
continuousMapMkNat πŸ“–CompOpβ€”
continuousMapNatEquiv πŸ“–CompOpβ€”
elim πŸ“–CompOp
2 mathmath: elim_some, elim_infty
equivOfIsEmbeddingOfRangeEq πŸ“–CompOp
2 mathmath: equivOfIsEmbeddingOfRangeEq_apply_infty, equivOfIsEmbeddingOfRangeEq_apply_coe
infty πŸ“–CompOp
57 mathmath: not_inseparable_infty_coe, exists, continuous_iff, isBoundedAt_iff_exists_SL2Z, equivOfIsEmbeddingOfRangeEq_apply_infty, continuousAt_infty, smul_infty_eq_self_iff, compl_infty, isClosed_infty, isZeroAt_iff_exists_SL2Z, infty_mem_opensOfCompl, notMem_range_coe_iff, nhdsNE_infty_neBot, infty_notMem_image_coe, isCusp_SL2Z_iff', tendsto_nhds_infty, smul_some_eq_ite, coe_preimage_infty, compl_range_coe, LightProfinite.continuous_iff_convergent, isZeroAt_infty_iff, canLift, isBoundedAt_infty_iff, elim_infty, instFactIsCuspInftyRealOfIsArithmetic, equivProjectivization_symm_apply_mk, not_specializes_infty_coe, comap_coe_nhds_infty, smul_infty_eq_ite, Rat.not_countably_generated_nhds_infty_opc, compl_image_coe, nhdsNE_infty_eq, continuous_iff_from_discrete, hasBasis_nhds_infty, smul_infty_def, continuousAt_infty', cosetToCuspOrbit_apply_mk, exists_mem_SL2, range_coe_union_infty, inseparable_iff, range_coe_inter_infty, Subgroup.strictWidthInfty_pos_iff, map_infty, Subgroup.isCusp_of_mem_strictPeriods, nhds_infty_eq, infty_notMem_range_coe, insert_infty_range_coe, ultrafilter_le_nhds_infty, Subgroup.widthInfty_pos_iff, tendsto_nhds_infty', tendsto_coe_infty, forall, not_inseparable_coe_infty, le_nhds_infty, continuous_iff_from_nat, isCompl_range_coe_infty, equivProjectivization_apply_infinity
instCoeTC πŸ“–CompOpβ€”
instFintype πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instTopologicalSpace πŸ“–CompOp
64 mathmath: not_inseparable_infty_coe, isOpen_def, instConnectedSpaceOfPreconnectedSpaceOfNoncompactSpace, continuous_iff, nhdsWithin_coe, nhdsWithin_coe_image, isClosed_iff_of_notMem, denseRange_coe, equivOfIsEmbeddingOfRangeEq_apply_infty, continuousAt_infty, isOpen_iff_of_mem, equivOfIsEmbeddingOfRangeEq_apply_coe, isOpen_iff_of_mem', isClosed_infty, infty_mem_opensOfCompl, isOpen_range_coe, isOpenMap_coe, nhdsNE_infty_neBot, continuous_map, comap_coe_nhds, tendsto_nhds_infty, Rat.not_firstCountableTopology_opc, nhdsNE_neBot, LightProfinite.continuous_iff_convergent, isClosed_iff_of_mem, isClosed_image_coe, instCompactSpace, LightProfinite.instMetrizableSpaceOnePointNat, instNormalSpaceOfWeaklyLocallyCompactSpaceOfR1Space, nhds_coe_eq, isOpen_iff_of_notMem, Homeomorph.onePointCongr_symm_apply, not_specializes_infty_coe, isOpenEmbedding_coe, inseparable_coe, comap_coe_nhds_infty, instT0Space, Rat.not_countably_generated_nhds_infty_opc, Rat.not_secondCountableTopology_opc, Homeomorph.onePointCongr_apply, nhdsNE_infty_eq, continuous_iff_from_discrete, hasBasis_nhds_infty, continuousAt_infty', inseparable_iff, not_continuous_cofiniteTopology_of_symm, isDenseEmbedding_coe, specializes_coe, continuous_map_iff, nhdsNE_coe_neBot, instTotallySeparatedSpaceOfDiscreteTopology, continuous_coe, nhds_infty_eq, ultrafilter_le_nhds_infty, tendsto_nhds_infty', tendsto_coe_infty, continuousAt_coe, not_inseparable_coe_infty, isOpen_compl_image_coe, le_nhds_infty, instT1Space, continuous_iff_from_nat, LightProfinite.isClosedEmbedding_natUnionInftyEmbedding, isOpen_image_coe
map πŸ“–CompOp
11 mathmath: continuous_map, map_smul, map_id, Homeomorph.onePointCongr_symm_apply, isCusp_SL2Z_iff, map_comp, map_some, Homeomorph.onePointCongr_apply, cosetToCuspOrbit_apply_mk, continuous_map_iff, map_infty
opensOfCompl πŸ“–CompOp
1 mathmath: infty_mem_opensOfCompl
rec πŸ“–CompOpβ€”
some πŸ“–CompOp
68 mathmath: not_inseparable_infty_coe, isOpen_def, exists, continuous_iff, nhdsWithin_coe, nhdsWithin_coe_image, isClosed_iff_of_notMem, denseRange_coe, continuousAt_infty, isOpen_iff_of_mem, equivOfIsEmbeddingOfRangeEq_apply_coe, isOpen_iff_of_mem', compl_infty, isOpen_range_coe, notMem_range_coe_iff, isOpenMap_coe, some_eq_iff, comap_coe_nhds, infty_notMem_image_coe, coe_injective, tendsto_nhds_infty, smul_some_eq_ite, coe_preimage_infty, compl_range_coe, LightProfinite.continuous_iff_convergent, isClosed_iff_of_mem, isClosed_image_coe, elim_some, canLift, nhds_coe_eq, isOpen_iff_of_notMem, Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff, equivProjectivization_symm_apply_mk, not_specializes_infty_coe, isOpenEmbedding_coe, inseparable_coe, comap_coe_nhds_infty, map_some, smul_infty_eq_ite, compl_image_coe, nhdsNE_infty_eq, continuous_iff_from_discrete, hasBasis_nhds_infty, continuousAt_infty', range_coe_union_infty, inseparable_iff, coe_eq_coe, isDenseEmbedding_coe, specializes_coe, nhdsNE_coe_neBot, range_coe_inter_infty, continuous_coe, nhds_infty_eq, infty_notMem_range_coe, insert_infty_range_coe, ultrafilter_le_nhds_infty, tendsto_nhds_infty', tendsto_coe_infty, continuousAt_coe, equivProjectivization_apply_coe, forall, not_inseparable_coe_infty, isOpen_compl_image_coe, le_nhds_infty, continuous_iff_from_nat, isCompl_range_coe_infty, isOpen_image_coe, ne_infty_iff_exists
Β«term∞» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
canLift πŸ“–mathematicalβ€”CanLift
OnePoint
some
infty
β€”WithTop.canLift
coe_eq_coe πŸ“–mathematicalβ€”someβ€”coe_injective
coe_injective πŸ“–mathematicalβ€”OnePoint
some
β€”Option.some_injective
coe_ne_infty πŸ“–β€”β€”β€”β€”β€”
coe_preimage_infty πŸ“–mathematicalβ€”Set.preimage
OnePoint
some
Set
Set.instSingletonSet
infty
Set.instEmptyCollection
β€”Set.ext
comap_coe_nhds πŸ“–mathematicalβ€”Filter.comap
OnePoint
some
nhds
instTopologicalSpace
β€”Topology.IsInducing.nhds_eq_comap
Topology.IsOpenEmbedding.isInducing
isOpenEmbedding_coe
comap_coe_nhds_infty πŸ“–mathematicalβ€”Filter.comap
OnePoint
some
nhds
instTopologicalSpace
infty
Filter.coclosedCompact
β€”nhds_infty_eq
Filter.comap_sup
Filter.comap_map
coe_injective
Filter.comap_pure
coe_preimage_infty
Filter.principal_empty
sup_of_le_left
compl_image_coe πŸ“–mathematicalβ€”Compl.compl
Set
OnePoint
Set.instCompl
Set.image
some
Set.instUnion
Set.instSingletonSet
infty
β€”Function.Injective.compl_image_eq
coe_injective
compl_range_coe
compl_infty πŸ“–mathematicalβ€”Compl.compl
Set
OnePoint
Set.instCompl
Set.instSingletonSet
infty
Set.range
some
β€”IsCompl.compl_eq
IsCompl.symm
isCompl_range_coe_infty
compl_range_coe πŸ“–mathematicalβ€”Compl.compl
Set
OnePoint
Set.instCompl
Set.range
some
Set.instSingletonSet
infty
β€”Set.compl_range_some
continuousAt_coe πŸ“–mathematicalβ€”ContinuousAt
OnePoint
instTopologicalSpace
some
β€”ContinuousAt.eq_1
nhds_coe_eq
Filter.tendsto_map'_iff
continuousAt_infty πŸ“–mathematicalβ€”ContinuousAt
OnePoint
instTopologicalSpace
infty
IsClosed
IsCompact
Set.MapsTo
some
Compl.compl
Set
Set.instCompl
β€”continuousAt_infty'
Filter.HasBasis.tendsto_left_iff
Filter.hasBasis_coclosedCompact
continuousAt_infty' πŸ“–mathematicalβ€”ContinuousAt
OnePoint
instTopologicalSpace
infty
Filter.Tendsto
some
Filter.coclosedCompact
nhds
β€”tendsto_nhds_infty'
tendsto_pure_nhds
continuous_coe πŸ“–mathematicalβ€”Continuous
OnePoint
instTopologicalSpace
some
β€”continuous_def
continuous_iff πŸ“–mathematicalβ€”Continuous
OnePoint
instTopologicalSpace
Filter.Tendsto
some
Filter.coclosedCompact
nhds
infty
β€”β€”
continuous_iff_from_discrete πŸ“–mathematicalβ€”Continuous
OnePoint
instTopologicalSpace
Filter.Tendsto
some
Filter.cofinite
nhds
infty
β€”Filter.coclosedCompact_eq_cocompact
T2Space.r1Space
DiscreteTopology.toT2Space
Filter.cocompact_eq_cofinite
continuous_iff_from_nat πŸ“–mathematicalβ€”Continuous
OnePoint
instTopologicalSpace
instTopologicalSpaceNat
Filter.Tendsto
some
Filter.atTop
Nat.instPreorder
nhds
infty
β€”continuous_iff_from_discrete
instDiscreteTopologyNat
Nat.cofinite_eq_atTop
continuous_map πŸ“–mathematicalContinuous
Filter.Tendsto
Filter.coclosedCompact
OnePoint
instTopologicalSpace
map
β€”continuous_map_iff
continuous_map_iff πŸ“–mathematicalβ€”Continuous
OnePoint
instTopologicalSpace
map
Filter.Tendsto
Filter.coclosedCompact
β€”Topology.IsInducing.continuous_iff
Topology.IsOpenEmbedding.isInducing
isOpenEmbedding_coe
denseRange_coe πŸ“–mathematicalβ€”DenseRange
OnePoint
instTopologicalSpace
some
β€”DenseRange.eq_1
compl_infty
dense_compl_singleton
nhdsNE_infty_neBot
elim_infty πŸ“–mathematicalβ€”elim
infty
β€”β€”
elim_some πŸ“–mathematicalβ€”elim
some
β€”β€”
equivOfIsEmbeddingOfRangeEq_apply_coe πŸ“–mathematicalTopology.IsEmbedding
Set.range
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
DFunLike.coe
Homeomorph
OnePoint
instTopologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
equivOfIsEmbeddingOfRangeEq
some
β€”β€”
equivOfIsEmbeddingOfRangeEq_apply_infty πŸ“–mathematicalTopology.IsEmbedding
Set.range
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
DFunLike.coe
Homeomorph
OnePoint
instTopologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
equivOfIsEmbeddingOfRangeEq
infty
β€”β€”
exists πŸ“–mathematicalβ€”infty
some
β€”β€”
forall πŸ“–mathematicalβ€”infty
some
β€”β€”
hasBasis_nhds_infty πŸ“–mathematicalβ€”Filter.HasBasis
OnePoint
Set
nhds
instTopologicalSpace
infty
IsClosed
IsCompact
Set.instUnion
Set.image
some
Compl.compl
Set.instCompl
Set.instSingletonSet
β€”nhds_infty_eq
Filter.HasBasis.sup_pure
Filter.HasBasis.map
Filter.hasBasis_coclosedCompact
infinite πŸ“–mathematicalβ€”Infinite
OnePoint
β€”instInfiniteOption
infty_mem_opensOfCompl πŸ“–mathematicalIsCompactOnePoint
TopologicalSpace.Opens
instTopologicalSpace
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
opensOfCompl
infty
β€”Set.mem_compl
infty_notMem_image_coe
infty_ne_coe πŸ“–β€”β€”β€”β€”β€”
infty_notMem_image_coe πŸ“–mathematicalβ€”OnePoint
Set
Set.instMembership
Set.image
some
infty
β€”Set.notMem_subset
Set.image_subset_range
infty_notMem_range_coe
infty_notMem_range_coe πŸ“–mathematicalβ€”OnePoint
Set
Set.instMembership
Set.range
some
infty
β€”notMem_range_coe_iff
inseparable_coe πŸ“–mathematicalβ€”Inseparable
OnePoint
instTopologicalSpace
some
β€”Topology.IsInducing.inseparable_iff
Topology.IsOpenEmbedding.isInducing
isOpenEmbedding_coe
inseparable_iff πŸ“–mathematicalβ€”Inseparable
OnePoint
instTopologicalSpace
infty
some
β€”β€”
insert_infty_range_coe πŸ“–mathematicalβ€”OnePoint
Set
Set.instInsert
infty
Set.range
some
Set.univ
β€”Set.insert_none_range_some
instCompactSpace πŸ“–mathematicalβ€”CompactSpace
OnePoint
instTopologicalSpace
β€”nhds_infty_eq
Filter.Tendsto.mono_right
Filter.Tendsto.mono_left
Filter.tendsto_map
Filter.cocompact_le_coclosedCompact
le_sup_left
Set.insert_none_range_some
Filter.Tendsto.isCompact_insert_range_of_cocompact
continuous_coe
instConnectedSpaceOfPreconnectedSpaceOfNoncompactSpace πŸ“–mathematicalβ€”ConnectedSpace
OnePoint
instTopologicalSpace
β€”IsDenseInducing.preconnectedSpace
IsDenseEmbedding.isDenseInducing
isDenseEmbedding_coe
instNormalSpaceOfWeaklyLocallyCompactSpaceOfR1Space πŸ“–mathematicalβ€”NormalSpace
OnePoint
instTopologicalSpace
β€”nhds_infty_eq
disjoint_sup_right
nhds_coe_eq
Filter.coclosedCompact_eq_cocompact
Filter.disjoint_map
coe_injective
Filter.principal_singleton
Filter.disjoint_principal_right
compl_infty
disjoint_nhds_cocompact
Filter.range_mem_map
le_rfl
Disjoint.symm
specializes_coe
R1Space.specializes_or_disjoint_nhds
NormalSpace.of_regularSpace_lindelofSpace
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
instCompactSpace
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
instT0Space πŸ“–mathematicalβ€”T0Space
OnePoint
instTopologicalSpace
β€”inseparable_iff
Inseparable.eq
instT1Space πŸ“–mathematicalβ€”T1Space
OnePoint
instTopologicalSpace
β€”isClosed_infty
Set.image_singleton
isClosed_image_coe
isClosed_singleton
isCompact_singleton
instTotallySeparatedSpaceOfDiscreteTopology πŸ“–mathematicalβ€”TotallySeparatedSpace
OnePoint
instTopologicalSpace
β€”isOpen_compl_singleton
instT1Space
T2Space.t1Space
DiscreteTopology.toT2Space
isOpen_iff_of_notMem
isOpen_discrete
Eq.subset
Set.instReflSubset
Set.compl_union_self
disjoint_compl_left
Set.union_compl_self
disjoint_compl_right
isClosed_iff_of_mem πŸ“–mathematicalOnePoint
Set
Set.instMembership
infty
IsClosed
instTopologicalSpace
Set.preimage
some
β€”isOpen_compl_iff
isOpen_iff_of_notMem
Set.preimage_compl
isClosed_iff_of_notMem πŸ“–mathematicalOnePoint
Set
Set.instMembership
infty
IsClosed
instTopologicalSpace
Set.preimage
some
IsCompact
β€”isOpen_compl_iff
isOpen_iff_of_mem
Set.mem_compl
Set.preimage_compl
compl_compl
isClosed_image_coe πŸ“–mathematicalβ€”IsClosed
OnePoint
instTopologicalSpace
Set.image
some
IsCompact
β€”isOpen_compl_iff
isOpen_compl_image_coe
isClosed_infty πŸ“–mathematicalβ€”IsClosed
OnePoint
instTopologicalSpace
Set
Set.instSingletonSet
infty
β€”compl_range_coe
isClosed_compl_iff
isOpen_range_coe
isCompl_range_coe_infty πŸ“–mathematicalβ€”IsCompl
Set
OnePoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instBoundedOrder
Set.range
some
Set.instSingletonSet
infty
β€”Set.isCompl_range_some_none
isDenseEmbedding_coe πŸ“–mathematicalβ€”IsDenseEmbedding
OnePoint
instTopologicalSpace
some
β€”isOpenEmbedding_coe
Topology.IsEmbedding.toIsInducing
Topology.IsOpenEmbedding.toIsEmbedding
denseRange_coe
Topology.IsEmbedding.injective
isOpenEmbedding_coe πŸ“–mathematicalβ€”Topology.IsOpenEmbedding
OnePoint
instTopologicalSpace
some
β€”Topology.IsOpenEmbedding.of_continuous_injective_isOpenMap
continuous_coe
coe_injective
isOpenMap_coe
isOpenMap_coe πŸ“–mathematicalβ€”IsOpenMap
OnePoint
instTopologicalSpace
some
β€”isOpen_image_coe
isOpen_compl_image_coe πŸ“–mathematicalβ€”IsOpen
OnePoint
instTopologicalSpace
Compl.compl
Set
Set.instCompl
Set.image
some
IsClosed
IsCompact
β€”isOpen_iff_of_mem
infty_notMem_image_coe
Set.preimage_compl
compl_compl
Set.preimage_image_eq
coe_injective
isOpen_def πŸ“–mathematicalβ€”IsOpen
OnePoint
instTopologicalSpace
IsCompact
Compl.compl
Set
Set.instCompl
Set.preimage
some
β€”β€”
isOpen_iff_of_mem πŸ“–mathematicalOnePoint
Set
Set.instMembership
infty
IsOpen
instTopologicalSpace
IsClosed
Compl.compl
Set.instCompl
Set.preimage
some
IsCompact
β€”isOpen_iff_of_mem'
isOpen_iff_of_mem' πŸ“–mathematicalOnePoint
Set
Set.instMembership
infty
IsOpen
instTopologicalSpace
IsCompact
Compl.compl
Set.instCompl
Set.preimage
some
β€”β€”
isOpen_iff_of_notMem πŸ“–mathematicalOnePoint
Set
Set.instMembership
infty
IsOpen
instTopologicalSpace
Set.preimage
some
β€”instIsEmptyFalse
isOpen_image_coe πŸ“–mathematicalβ€”IsOpen
OnePoint
instTopologicalSpace
Set.image
some
β€”isOpen_iff_of_notMem
infty_notMem_image_coe
Set.preimage_image_eq
coe_injective
isOpen_range_coe πŸ“–mathematicalβ€”IsOpen
OnePoint
instTopologicalSpace
Set.range
some
β€”Topology.IsOpenEmbedding.isOpen_range
isOpenEmbedding_coe
le_nhds_infty πŸ“–mathematicalβ€”Filter
OnePoint
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
instTopologicalSpace
infty
Set
Filter.instMembership
Set.instUnion
Set.image
some
Compl.compl
Set.instCompl
Set.instSingletonSet
β€”Filter.HasBasis.ge_iff
hasBasis_nhds_infty
map_comp πŸ“–mathematicalβ€”map
OnePoint
β€”β€”
map_id πŸ“–mathematicalβ€”map
OnePoint
β€”β€”
map_infty πŸ“–mathematicalβ€”map
infty
β€”β€”
map_some πŸ“–mathematicalβ€”map
some
β€”β€”
ne_infty_iff_exists πŸ“–mathematicalβ€”someβ€”β€”
nhdsNE_coe_neBot πŸ“–mathematicalβ€”Filter.NeBot
OnePoint
nhdsWithin
instTopologicalSpace
some
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”nhdsWithin_coe
Filter.NeBot.map
nhdsNE_infty_eq πŸ“–mathematicalβ€”nhdsWithin
OnePoint
instTopologicalSpace
infty
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.map
some
Filter.coclosedCompact
β€”Filter.HasBasis.ext
nhdsWithin_basis_open
Filter.HasBasis.map
Filter.hasBasis_coclosedCompact
isOpen_iff_of_mem
compl_compl
Set.instReflSubset
Set.mem_compl
infty_notMem_image_coe
isOpen_compl_image_coe
compl_image_coe
Set.union_singleton
Set.insert_diff_of_mem
Set.diff_singleton_eq_self
nhdsNE_infty_neBot πŸ“–mathematicalβ€”Filter.NeBot
OnePoint
nhdsWithin
instTopologicalSpace
infty
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”nhdsNE_infty_eq
Filter.map_neBot
instNeBotCoclosedCompactOfNoncompactSpace
nhdsNE_neBot πŸ“–mathematicalFilter.NeBot
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
OnePoint
instTopologicalSpace
β€”nhdsNE_infty_neBot
nhdsNE_coe_neBot
nhdsWithin_coe πŸ“–mathematicalβ€”nhdsWithin
OnePoint
instTopologicalSpace
some
Filter.map
Set.preimage
β€”Topology.IsOpenEmbedding.map_nhdsWithin_preimage_eq
isOpenEmbedding_coe
nhdsWithin_coe_image πŸ“–mathematicalβ€”nhdsWithin
OnePoint
instTopologicalSpace
some
Set.image
Filter.map
β€”Topology.IsEmbedding.map_nhdsWithin_eq
Topology.IsOpenEmbedding.isEmbedding
isOpenEmbedding_coe
nhds_coe_eq πŸ“–mathematicalβ€”nhds
OnePoint
instTopologicalSpace
some
Filter.map
β€”Topology.IsOpenEmbedding.map_nhds_eq
isOpenEmbedding_coe
nhds_infty_eq πŸ“–mathematicalβ€”nhds
OnePoint
instTopologicalSpace
infty
Filter
Filter.instSup
Filter.map
some
Filter.coclosedCompact
Filter.instPure
β€”nhdsNE_infty_eq
nhdsNE_sup_pure
notMem_range_coe_iff πŸ“–mathematicalβ€”OnePoint
Set
Set.instMembership
Set.range
some
infty
β€”Set.mem_compl_iff
compl_range_coe
Set.mem_singleton_iff
not_continuous_cofiniteTopology_of_symm πŸ“–mathematicalβ€”Continuous
CofiniteTopology
OnePoint
CofiniteTopology.instTopologicalSpace
instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CofiniteTopology.of
β€”Nontrivial.to_nonempty
Infinite.instNontrivial
CofiniteTopology.nhds_eq
Equiv.symm_apply_apply
nhds_coe_eq
nhds_discrete
Set.Finite.infinite_compl
infinite
Set.finite_singleton
not_inseparable_coe_infty πŸ“–mathematicalβ€”Inseparable
OnePoint
instTopologicalSpace
some
infty
β€”not_specializes_infty_coe
Inseparable.specializes'
not_inseparable_infty_coe πŸ“–mathematicalβ€”Inseparable
OnePoint
instTopologicalSpace
infty
some
β€”not_specializes_infty_coe
Inseparable.specializes
not_specializes_infty_coe πŸ“–mathematicalβ€”Specializes
OnePoint
instTopologicalSpace
infty
some
β€”IsClosed.not_specializes
isClosed_infty
coe_ne_infty
range_coe_inter_infty πŸ“–mathematicalβ€”Set
OnePoint
Set.instInter
Set.range
some
Set.instSingletonSet
infty
Set.instEmptyCollection
β€”Set.inter_singleton_of_notMem
range_coe_union_infty πŸ“–mathematicalβ€”Set
OnePoint
Set.instUnion
Set.range
some
Set.instSingletonSet
infty
Set.univ
β€”Set.range_some_union_none
some_eq_iff πŸ“–mathematicalβ€”someβ€”iff_eq_eq
specializes_coe πŸ“–mathematicalβ€”Specializes
OnePoint
instTopologicalSpace
some
β€”Topology.IsInducing.specializes_iff
Topology.IsOpenEmbedding.isInducing
isOpenEmbedding_coe
tendsto_coe_infty πŸ“–mathematicalβ€”Filter.Tendsto
OnePoint
some
Filter.coclosedCompact
nhds
instTopologicalSpace
infty
β€”nhds_infty_eq
Filter.Tendsto.mono_right
Filter.tendsto_map
le_sup_left
tendsto_nhds_infty πŸ“–mathematicalβ€”Filter.Tendsto
OnePoint
nhds
instTopologicalSpace
infty
Set
Set.instMembership
IsClosed
IsCompact
Set.MapsTo
some
Compl.compl
Set.instCompl
β€”tendsto_nhds_infty'
Filter.HasBasis.tendsto_left_iff
Filter.hasBasis_coclosedCompact
tendsto_nhds_infty' πŸ“–mathematicalβ€”Filter.Tendsto
OnePoint
nhds
instTopologicalSpace
infty
Filter
Filter.instPure
some
Filter.coclosedCompact
β€”nhds_infty_eq
ultrafilter_le_nhds_infty πŸ“–mathematicalβ€”Filter
OnePoint
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
nhds
instTopologicalSpace
infty
Set
Ultrafilter
Ultrafilter.instMembershipSet
Set.image
some
β€”β€”

(root)

Definitions

NameCategoryTheorems
OnePoint πŸ“–CompOp
94 mathmath: OnePoint.not_inseparable_infty_coe, OnePoint.isOpen_def, OnePoint.instConnectedSpaceOfPreconnectedSpaceOfNoncompactSpace, OnePoint.continuous_iff, OnePoint.nhdsWithin_coe, OnePoint.nhdsWithin_coe_image, OnePoint.isBoundedAt_iff_exists_SL2Z, OnePoint.denseRange_coe, IsCusp.smul_of_mem, OnePoint.equivOfIsEmbeddingOfRangeEq_apply_infty, OnePoint.continuousAt_infty, OnePoint.equivOfIsEmbeddingOfRangeEq_apply_coe, OnePoint.smul_infty_eq_self_iff, OnePoint.compl_infty, OnePoint.isClosed_infty, OnePoint.isZeroAt_iff_exists_SL2Z, OnePoint.infty_mem_opensOfCompl, OnePoint.isOpen_range_coe, OnePoint.notMem_range_coe_iff, OnePoint.isOpenMap_coe, OnePoint.nhdsNE_infty_neBot, OnePoint.continuous_map, OnePoint.comap_coe_nhds, OnePoint.infty_notMem_image_coe, isCusp_SL2Z_iff', OnePoint.coe_injective, OnePoint.tendsto_nhds_infty, OnePoint.smul_some_eq_ite, Rat.not_firstCountableTopology_opc, OnePoint.coe_preimage_infty, OnePoint.nhdsNE_neBot, OnePoint.compl_range_coe, OnePoint.isClosed_image_coe, OnePoint.instCompactSpace, OnePoint.map_smul, OnePoint.canLift, LightProfinite.instMetrizableSpaceOnePointNat, OnePoint.instNormalSpaceOfWeaklyLocallyCompactSpaceOfR1Space, OnePoint.nhds_coe_eq, OnePoint.IsZeroAt.smul_iff, Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff, OnePoint.map_id, Homeomorph.onePointCongr_symm_apply, isCusp_SL2Z_iff, OnePoint.map_comp, OnePoint.equivProjectivization_symm_apply_mk, OnePoint.not_specializes_infty_coe, OnePoint.isOpenEmbedding_coe, OnePoint.inseparable_coe, OnePoint.comap_coe_nhds_infty, OnePoint.smul_infty_eq_ite, OnePoint.instT0Space, OnePoint.IsBoundedAt.smul_iff, Rat.not_countably_generated_nhds_infty_opc, Rat.not_secondCountableTopology_opc, Homeomorph.onePointCongr_apply, OnePoint.compl_image_coe, OnePoint.nhdsNE_infty_eq, OnePoint.continuous_iff_from_discrete, OnePoint.hasBasis_nhds_infty, OnePoint.smul_infty_def, OnePoint.continuousAt_infty', cosetToCuspOrbit_apply_mk, OnePoint.exists_mem_SL2, OnePoint.range_coe_union_infty, OnePoint.inseparable_iff, OnePoint.not_continuous_cofiniteTopology_of_symm, OnePoint.isDenseEmbedding_coe, OnePoint.specializes_coe, OnePoint.continuous_map_iff, OnePoint.nhdsNE_coe_neBot, OnePoint.instTotallySeparatedSpaceOfDiscreteTopology, OnePoint.range_coe_inter_infty, OnePoint.continuous_coe, OnePoint.nhds_infty_eq, OnePoint.infty_notMem_range_coe, OnePoint.insert_infty_range_coe, OnePoint.ultrafilter_le_nhds_infty, OnePoint.tendsto_nhds_infty', OnePoint.tendsto_coe_infty, OnePoint.continuousAt_coe, OnePoint.equivProjectivization_apply_coe, OnePoint.not_inseparable_coe_infty, OnePoint.isOpen_compl_image_coe, OnePoint.le_nhds_infty, OnePoint.instT1Space, Matrix.GeneralLinearGroup.IsParabolic.smul_eq_self_iff, OnePoint.continuous_iff_from_nat, OnePoint.isCompl_range_coe_infty, OnePoint.infinite, LightProfinite.isClosedEmbedding_natUnionInftyEmbedding, IsCusp.smul, OnePoint.equivProjectivization_apply_infinity, OnePoint.isOpen_image_coe
instReprOnePoint πŸ“–CompOpβ€”

---

← Back to Index