| Name | Category | Theorems |
continuousMapDiscreteEquiv π | CompOp | β |
continuousMapMk π | CompOp | β |
continuousMapMkDiscrete π | CompOp | β |
continuousMapMkNat π | CompOp | β |
continuousMapNatEquiv π | CompOp | β |
elim π | CompOp | 2 mathmath: elim_some, elim_infty
|
equivOfIsEmbeddingOfRangeEq π | CompOp | 2 mathmath: equivOfIsEmbeddingOfRangeEq_apply_infty, equivOfIsEmbeddingOfRangeEq_apply_coe
|
infty π | CompOp | 57 mathmath: not_inseparable_infty_coe, exists, continuous_iff, isBoundedAt_iff_exists_SL2Z, equivOfIsEmbeddingOfRangeEq_apply_infty, continuousAt_infty, smul_infty_eq_self_iff, compl_infty, isClosed_infty, isZeroAt_iff_exists_SL2Z, infty_mem_opensOfCompl, notMem_range_coe_iff, nhdsNE_infty_neBot, infty_notMem_image_coe, isCusp_SL2Z_iff', tendsto_nhds_infty, smul_some_eq_ite, coe_preimage_infty, compl_range_coe, LightProfinite.continuous_iff_convergent, isZeroAt_infty_iff, canLift, isBoundedAt_infty_iff, elim_infty, instFactIsCuspInftyRealOfIsArithmetic, equivProjectivization_symm_apply_mk, not_specializes_infty_coe, comap_coe_nhds_infty, smul_infty_eq_ite, Rat.not_countably_generated_nhds_infty_opc, compl_image_coe, nhdsNE_infty_eq, continuous_iff_from_discrete, hasBasis_nhds_infty, smul_infty_def, continuousAt_infty', cosetToCuspOrbit_apply_mk, exists_mem_SL2, range_coe_union_infty, inseparable_iff, range_coe_inter_infty, Subgroup.strictWidthInfty_pos_iff, map_infty, Subgroup.isCusp_of_mem_strictPeriods, nhds_infty_eq, infty_notMem_range_coe, insert_infty_range_coe, ultrafilter_le_nhds_infty, Subgroup.widthInfty_pos_iff, tendsto_nhds_infty', tendsto_coe_infty, forall, not_inseparable_coe_infty, le_nhds_infty, continuous_iff_from_nat, isCompl_range_coe_infty, equivProjectivization_apply_infinity
|
instCoeTC π | CompOp | β |
instFintype π | CompOp | β |
instInhabited π | CompOp | β |
instTopologicalSpace π | CompOp | 64 mathmath: not_inseparable_infty_coe, isOpen_def, instConnectedSpaceOfPreconnectedSpaceOfNoncompactSpace, continuous_iff, nhdsWithin_coe, nhdsWithin_coe_image, isClosed_iff_of_notMem, denseRange_coe, equivOfIsEmbeddingOfRangeEq_apply_infty, continuousAt_infty, isOpen_iff_of_mem, equivOfIsEmbeddingOfRangeEq_apply_coe, isOpen_iff_of_mem', isClosed_infty, infty_mem_opensOfCompl, isOpen_range_coe, isOpenMap_coe, nhdsNE_infty_neBot, continuous_map, comap_coe_nhds, tendsto_nhds_infty, Rat.not_firstCountableTopology_opc, nhdsNE_neBot, LightProfinite.continuous_iff_convergent, isClosed_iff_of_mem, isClosed_image_coe, instCompactSpace, LightProfinite.instMetrizableSpaceOnePointNat, instNormalSpaceOfWeaklyLocallyCompactSpaceOfR1Space, nhds_coe_eq, isOpen_iff_of_notMem, Homeomorph.onePointCongr_symm_apply, not_specializes_infty_coe, isOpenEmbedding_coe, inseparable_coe, comap_coe_nhds_infty, instT0Space, Rat.not_countably_generated_nhds_infty_opc, Rat.not_secondCountableTopology_opc, Homeomorph.onePointCongr_apply, nhdsNE_infty_eq, continuous_iff_from_discrete, hasBasis_nhds_infty, continuousAt_infty', inseparable_iff, not_continuous_cofiniteTopology_of_symm, isDenseEmbedding_coe, specializes_coe, continuous_map_iff, nhdsNE_coe_neBot, instTotallySeparatedSpaceOfDiscreteTopology, continuous_coe, nhds_infty_eq, ultrafilter_le_nhds_infty, tendsto_nhds_infty', tendsto_coe_infty, continuousAt_coe, not_inseparable_coe_infty, isOpen_compl_image_coe, le_nhds_infty, instT1Space, continuous_iff_from_nat, LightProfinite.isClosedEmbedding_natUnionInftyEmbedding, isOpen_image_coe
|
map π | CompOp | 11 mathmath: continuous_map, map_smul, map_id, Homeomorph.onePointCongr_symm_apply, isCusp_SL2Z_iff, map_comp, map_some, Homeomorph.onePointCongr_apply, cosetToCuspOrbit_apply_mk, continuous_map_iff, map_infty
|
opensOfCompl π | CompOp | 1 mathmath: infty_mem_opensOfCompl
|
rec π | CompOp | β |
some π | CompOp | 68 mathmath: not_inseparable_infty_coe, isOpen_def, exists, continuous_iff, nhdsWithin_coe, nhdsWithin_coe_image, isClosed_iff_of_notMem, denseRange_coe, continuousAt_infty, isOpen_iff_of_mem, equivOfIsEmbeddingOfRangeEq_apply_coe, isOpen_iff_of_mem', compl_infty, isOpen_range_coe, notMem_range_coe_iff, isOpenMap_coe, some_eq_iff, comap_coe_nhds, infty_notMem_image_coe, coe_injective, tendsto_nhds_infty, smul_some_eq_ite, coe_preimage_infty, compl_range_coe, LightProfinite.continuous_iff_convergent, isClosed_iff_of_mem, isClosed_image_coe, elim_some, canLift, nhds_coe_eq, isOpen_iff_of_notMem, Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff, equivProjectivization_symm_apply_mk, not_specializes_infty_coe, isOpenEmbedding_coe, inseparable_coe, comap_coe_nhds_infty, map_some, smul_infty_eq_ite, compl_image_coe, nhdsNE_infty_eq, continuous_iff_from_discrete, hasBasis_nhds_infty, continuousAt_infty', range_coe_union_infty, inseparable_iff, coe_eq_coe, isDenseEmbedding_coe, specializes_coe, nhdsNE_coe_neBot, range_coe_inter_infty, continuous_coe, nhds_infty_eq, infty_notMem_range_coe, insert_infty_range_coe, ultrafilter_le_nhds_infty, tendsto_nhds_infty', tendsto_coe_infty, continuousAt_coe, equivProjectivization_apply_coe, forall, not_inseparable_coe_infty, isOpen_compl_image_coe, le_nhds_infty, continuous_iff_from_nat, isCompl_range_coe_infty, isOpen_image_coe, ne_infty_iff_exists
|
Β«termβΒ» π | CompOp | β |