Compact
π Source: Mathlib/Topology/Compactness/Compact.lean
Statistics
Bornology
Definitions
| Name | Category | Theorems |
|---|---|---|
inCompact π | CompOp |
Bornology.inCompact
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isBounded_iff π | mathematical | β | Bornology.IsBoundedBornology.inCompactIsCompactSetSet.instHasSubset | β | Filter.mem_cocompact |
CompactSpace
Theorems
Filter
Theorems
Filter.Tendsto
Theorems
Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compactSpace π | mathematical | β | CompactSpace | β | Set.Finite.isCompactSet.finite_univ |
Finset
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isCompact_biUnion π | mathematical | IsCompact | Set.iUnionFinsetinstMembership | β | Set.Finite.isCompact_biUnionfinite_toSet |
Function
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compactSpace π | mathematical | β | CompactSpacePi.topologicalSpace | β | Pi.compactSpace |
IsClosed
Theorems
IsCompact
Theorems
Pi
Theorems
Prod
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
noncompactSpace_iff π | mathematical | β | NoncompactSpaceinstTopologicalSpaceProd | β | β |
noncompactSpace_left π | mathematical | β | NoncompactSpaceinstTopologicalSpaceProd | β | noncompactSpace_iff |
noncompactSpace_right π | mathematical | β | NoncompactSpaceinstTopologicalSpaceProd | β | noncompactSpace_iff |
Quot
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compactSpace π | mathematical | β | CompactSpaceinstTopologicalSpaceQuot | β | isCompact_range |
Quotient
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compactSpace π | mathematical | β | CompactSpaceinstTopologicalSpaceQuotient | β | Quot.compactSpace |
Set
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isCompact_sigma π | mathematical | IsCompact | instTopologicalSpaceSigmasigma | β | sigma_eq_biUnionFinite.isCompact_biUnionIsCompact.imagecontinuous_sigmaMk |
sUnion_isCompact_eq_univ π | mathematical | β | sUnionsetOfSetIsCompactuniv | β | eq_univ_of_forall |
Set.Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isCompact π | mathematical | β | IsCompact | β | isCompact_biUnionisCompact_singletonSet.biUnion_of_singleton |
isCompact_biUnion π | mathematical | IsCompact | Set.iUnionSetSet.instMembership | β | isCompact_iff_ultrafilter_le_nhds'Ultrafilter.finite_biUnion_mem_iffIsCompact.ultrafilter_le_nhdsFilter.le_principal_iffSet.mem_iUnionβ |
isCompact_sUnion π | mathematical | IsCompact | Set.sUnion | β | Set.sUnion_eq_biUnionisCompact_biUnion |
Set.Infinite
Theorems
Set.Subsingleton
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isCompact π | mathematical | Set.Subsingleton | IsCompact | β | induction_onisCompact_emptyisCompact_singleton |
Subsingleton
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compactSpace π | mathematical | β | CompactSpace | β | Set.Subsingleton.isCompactSet.subsingleton_univ |
Subtype
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isCompact_iff π | mathematical | β | IsCompactinstTopologicalSpaceSubtypeSet.image | β | Topology.IsEmbedding.isCompact_iffTopology.IsEmbedding.subtypeVal |
Topology.IsClosedEmbedding
Theorems
Topology.IsEmbedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isCompact_iff π | mathematical | Topology.IsEmbedding | IsCompactSet.image | β | Topology.IsInducing.isCompact_iffisInducing |
Topology.IsInducing
Theorems
ULift
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compactSpace π | mathematical | β | CompactSpacetopologicalSpace | β | Topology.IsClosedEmbedding.compactSpaceTopology.IsClosedEmbedding.uliftDown |
Ultrafilter
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
le_nhds_lim π | mathematical | β | FilterPreorder.toLEPartialOrder.toPreorderFilter.instPartialOrdertoFilternhdslim | β | IsCompact.ultrafilter_le_nhdsisCompact_univFilter.principal_univle_nhds_lim |
(root)
Theorems
---