Documentation Verification Report

Compact

πŸ“ Source: Mathlib/Topology/Compactness/Compact.lean

Statistics

MetricCount
DefinitionsinCompact
1
TheoremsisBounded_iff, elim_nhds_subcover, iInter_nonempty, isCompact_insert_range, isCompact_insert_range_of_cocompact, isCompact_insert_range_of_cofinite, cocompact_eq_bot, cocompact_eq_cofinite, cocompact_le_coclosedCompact, cocompact_le_cofinite, cocompact_neBot_iff, comap_cocompact_le, compl_mem_coclosedCompact, coprod_cocompact, coprodα΅’_cocompact, disjoint_cocompact_left, disjoint_cocompact_right, hasBasis_coclosedCompact, hasBasis_cocompact, mem_coclosedCompact_iff, mem_cocompact, mem_cocompact', compactSpace, isCompact_biUnion, compactSpace, exists_minimal_nonempty_closed_subset, isCompact, adherence_nhdset, compl_mem_coclosedCompact_of_isClosed, compl_mem_cocompact, compl_mem_sets, compl_mem_sets_of_nhdsWithin, diff, disjoint_nhdsSet_left, disjoint_nhdsSet_right, elim_directed_cover, elim_directed_family_closed, elim_finite_subcover, elim_finite_subcover_image, elim_finite_subfamily_closed, elim_finite_subfamily_isClosed_subtype, elim_nhdsWithin_subcover, elim_nhdsWithin_subcover', elim_nhds_subcover, elim_nhds_subcover', elim_nhds_subcover_nhdsSet, elim_nhds_subcover_nhdsSet', eventually_forall_of_forall_eventually, exists_clusterPt, exists_clusterPt_of_frequently, exists_mapClusterPt, exists_mapClusterPt_of_frequently, finite, finite_of_discrete, image, image_of_continuousOn, induction_on, inf_nhdsSet_eq_biSup, insert, inter_iInter_nonempty, inter_left, inter_right, le_nhds_of_unique_clusterPt, mem_inf_nhdsSet_of_forall, mem_nhdsSet_inf_of_forall, mem_nhdsSet_prod_of_forall, mem_prod_nhdsSet_of_forall, ne_univ, nhdsSetWithin_prod_eq, nhdsSet_inf_eq_biSup, nhdsSet_prod_eq, nhdsSet_prod_eq_biSup, nonempty_iInter_of_directed_nonempty_isCompact_isClosed, nonempty_iInter_of_sequence_nonempty_isCompact_isClosed, nonempty_sInter_of_directed_nonempty_isCompact_isClosed, of_isClosed_subset, prod, prod_nhdsSet_eq_biSup, sigma_exists_finite_sigma_eq, tendsto_nhds_of_unique_mapClusterPt, ultrafilter_le_nhds, ultrafilter_le_nhds', union, compactSpace, exists_compact_superset_iff, isCompact_iff_of_isClosed, noncompactSpace_iff, noncompactSpace_left, noncompactSpace_right, compactSpace, compactSpace, isCompact, isCompact_biUnion, isCompact_sUnion, exists_accPt_cofinite_inf_principal, exists_accPt_cofinite_inf_principal_of_subset_isCompact, exists_accPt_of_subset_isCompact, exists_accPt_principal, isCompact, isCompact_sigma, sUnion_isCompact_eq_univ, compactSpace, isCompact_iff, compactSpace, isCompact_preimage, noncompactSpace, tendsto_cocompact, isCompact_iff, isCompact_iff, isCompact_preimage, isCompact_preimage', isCompact_preimage_iff, compactSpace, le_nhds_lim, compactSpace_generateFrom, compactSpace_generateFrom', compactSpace_of_finite_subfamily_closed, disjoint_map_cocompact, exists_clusterPt_of_compactSpace, exists_nhds_ne_inf_principal_neBot, exists_nhds_ne_neBot, exists_subset_nhds_of_compactSpace, exists_subset_nhds_of_isCompact', finite_cover_nhds, finite_cover_nhds_interior, finite_of_compact_of_discrete, generalized_tube_lemma, generalized_tube_lemma', generalized_tube_lemma_left, generalized_tube_lemma_right, instCompactSpaceProd, instCompactSpaceSigmaOfFinite, instCompactSpaceSum, instNeBotCoclosedCompactOfNoncompactSpace, instNeBotCocompactOfNoncompactSpace, instNoncompactSpaceInt, isCompact_accumulate, isCompact_diagonal, isCompact_empty, isCompact_generateFrom, isCompact_generateFrom', isCompact_iUnion, isCompact_iff_compactSpace, isCompact_iff_finite, isCompact_iff_finite_subcover, isCompact_iff_finite_subfamily_closed, isCompact_iff_isCompact_univ, isCompact_iff_ultrafilter_le_nhds, isCompact_iff_ultrafilter_le_nhds', isCompact_of_finite_subcover, isCompact_of_finite_subfamily_closed, isCompact_pi_infinite, isCompact_range, isCompact_singleton, isCompact_univ, isCompact_univ_iff, isCompact_univ_pi, le_nhds_of_unique_clusterPt, nhdsSet_prod_le_of_disjoint_cocompact, nhds_prod_le_of_disjoint_cocompact, noncompactSpace_of_neBot, noncompact_univ, not_compactSpace_iff, prod_nhdsSet_le_of_disjoint_cocompact, prod_nhds_le_of_disjoint_cocompact, tendsto_nhds_of_unique_mapClusterPt
166
Total167

Bornology

Definitions

NameCategoryTheorems
inCompact πŸ“–CompOp
2 mathmath: relativelyCompact_eq_inCompact, inCompact.isBounded_iff

Bornology.inCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded_iff πŸ“–mathematicalβ€”Bornology.IsBounded
Bornology.inCompact
IsCompact
Set
Set.instHasSubset
β€”Filter.mem_cocompact

CompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
elim_nhds_subcover πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.iUnion
Finset
Finset.instMembership
Top.top
BooleanAlgebra.toTop
Set.instBooleanAlgebra
β€”IsCompact.elim_nhds_subcover
isCompact_univ
top_unique
iInter_nonempty πŸ“–β€”IsClosed
Set.Nonempty
Set.iInter
Finset
Finset.instMembership
β€”β€”Set.univ_inter
IsCompact.inter_iInter_nonempty
isCompact_univ

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
cocompact_eq_bot πŸ“–mathematicalβ€”cocompact
Bot.bot
Filter
instBot
β€”HasBasis.eq_bot_iff
hasBasis_cocompact
isCompact_univ
Set.compl_univ
cocompact_eq_cofinite πŸ“–mathematicalβ€”cocompact
cofinite
β€”iInf_congr_Prop
HasBasis.eq_biInf
hasBasis_cofinite
cocompact_le_coclosedCompact πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
cocompact
coclosedCompact
β€”iInf_mono
le_iInf
le_rfl
cocompact_le_cofinite πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
cocompact
cofinite
β€”IsCompact.compl_mem_cocompact
Set.Finite.isCompact
compl_compl
cocompact_neBot_iff πŸ“–mathematicalβ€”NeBot
cocompact
NoncompactSpace
β€”noncompactSpace_of_neBot
instNeBotCocompactOfNoncompactSpace
comap_cocompact_le πŸ“–mathematicalContinuousFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
cocompact
β€”HasBasis.le_basis_iff
HasBasis.comap
hasBasis_cocompact
IsCompact.image
Set.subset_preimage_image
compl_mem_coclosedCompact πŸ“–mathematicalβ€”Set
Filter
instMembership
coclosedCompact
Compl.compl
Set.instCompl
IsCompact
closure
β€”mem_coclosedCompact_iff
compl_compl
coprod_cocompact πŸ“–mathematicalβ€”coprod
cocompact
instTopologicalSpaceProd
β€”le_antisymm
sup_le
comap_cocompact_le
continuous_fst
continuous_snd
HasBasis.ge_iff
HasBasis.coprod
hasBasis_cocompact
Set.univ_prod
Set.prod_univ
Set.compl_prod_eq_union
IsCompact.compl_mem_cocompact
IsCompact.prod
coprodα΅’_cocompact πŸ“–mathematicalβ€”coprodα΅’
cocompact
Pi.topologicalSpace
β€”le_antisymm
iSup_le
comap_cocompact_le
continuous_apply
Function.Surjective.forall
compl_surjective
isCompact_univ_pi
disjoint_cocompact_left πŸ“–mathematicalβ€”Disjoint
Filter
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
cocompact
Set
instMembership
IsCompact
β€”HasBasis.disjoint_iff_left
hasBasis_cocompact
compl_compl
disjoint_cocompact_right πŸ“–mathematicalβ€”Disjoint
Filter
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
cocompact
Set
instMembership
IsCompact
β€”HasBasis.disjoint_iff_right
hasBasis_cocompact
compl_compl
hasBasis_coclosedCompact πŸ“–mathematicalβ€”HasBasis
Set
coclosedCompact
IsClosed
IsCompact
Compl.compl
Set.instCompl
β€”iInf_and'
hasBasis_biInf_principal'
IsClosed.union
IsCompact.union
Set.compl_subset_compl
Set.subset_union_left
Set.subset_union_right
isClosed_empty
isCompact_empty
hasBasis_cocompact πŸ“–mathematicalβ€”HasBasis
Set
cocompact
IsCompact
Compl.compl
Set.instCompl
β€”hasBasis_biInf_principal'
IsCompact.union
Set.compl_subset_compl
Set.subset_union_left
Set.subset_union_right
isCompact_empty
mem_coclosedCompact_iff πŸ“–mathematicalβ€”Set
Filter
instMembership
coclosedCompact
IsCompact
closure
Compl.compl
Set.instCompl
β€”HasBasis.mem_iff
hasBasis_coclosedCompact
IsCompact.of_isClosed_subset
isClosed_closure
closure_minimal
Set.compl_subset_comm
subset_closure
mem_cocompact πŸ“–mathematicalβ€”Set
Filter
instMembership
cocompact
IsCompact
Set.instHasSubset
Compl.compl
Set.instCompl
β€”HasBasis.mem_iff
hasBasis_cocompact
mem_cocompact' πŸ“–mathematicalβ€”Set
Filter
instMembership
cocompact
IsCompact
Set.instHasSubset
Compl.compl
Set.instCompl
β€”mem_cocompact
Set.compl_subset_comm

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_insert_range πŸ“–mathematicalFilter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
IsCompact
Set
Set.instInsert
Set.range
β€”isCompact_insert_range_of_cofinite
Nat.cofinite_eq_atTop
isCompact_insert_range_of_cocompact πŸ“–mathematicalFilter.Tendsto
Filter.cocompact
nhds
Continuous
IsCompact
Set
Set.instInsert
Set.range
β€”Filter.mem_cocompact
Filter.mp_mem
Filter.le_principal_iff
Filter.univ_mem'
Disjoint.le_bot
mem_of_mem_nhds
Set.mem_image_of_mem
IsCompact.image
Set.image_subset_range
isCompact_insert_range_of_cofinite πŸ“–mathematicalFilter.Tendsto
Filter.cofinite
nhds
IsCompact
Set
Set.instInsert
Set.range
β€”isCompact_insert_range_of_cocompact
Filter.cocompact_eq_cofinite
continuous_of_discreteTopology

Finite

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalβ€”CompactSpaceβ€”Set.Finite.isCompact
Set.finite_univ

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_biUnion πŸ“–mathematicalIsCompactSet.iUnion
Finset
instMembership
β€”Set.Finite.isCompact_biUnion
finite_toSet

Function

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalβ€”CompactSpace
Pi.topologicalSpace
β€”Pi.compactSpace

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
exists_minimal_nonempty_closed_subset πŸ“–mathematicalSet.NonemptySet
Set.instHasSubset
IsClosed
β€”zorn_subset
isOpen_sUnion
Set.ext
IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
IsChain.directedOn
Set.instReflSubset
Set.compl_subset_compl
isCompact
IsOpen.isClosed_compl
Set.Subset.refl
isOpen_compl_iff
compl_compl
Maximal.prop
Set.compl_subset_comm
Maximal.eq_of_ge
Set.Subset.trans
Set.subset_compl_comm
isCompact πŸ“–mathematicalβ€”IsCompactβ€”IsCompact.of_isClosed_subset
isCompact_univ
Set.subset_univ

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
adherence_nhdset πŸ“–mathematicalIsCompact
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.principal
IsOpen
Set
Set.instMembership
Filter.instMembershipβ€”Classical.by_cases
Filter.mem_of_eq_bot
inf_le_of_left_le
ClusterPt.of_inf_left
inter_mem_nhdsWithin
IsOpen.mem_nhds
Filter.empty_mem_iff_bot
Set.compl_inter_self
Filter.NeBot.ne
ClusterPt.of_inf_right
compl_mem_coclosedCompact_of_isClosed πŸ“–mathematicalIsCompactSet
Filter
Filter.instMembership
Filter.coclosedCompact
Compl.compl
Set.instCompl
β€”Filter.HasBasis.mem_of_mem
Filter.hasBasis_coclosedCompact
compl_mem_cocompact πŸ“–mathematicalIsCompactSet
Filter
Filter.instMembership
Filter.cocompact
Compl.compl
Set.instCompl
β€”Filter.HasBasis.mem_of_mem
Filter.hasBasis_cocompact
compl_mem_sets πŸ“–β€”IsCompact
Set
Filter
Filter.instMembership
Filter.instInf
nhds
Compl.compl
Set.instCompl
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
compl_compl
inf_assoc
inf_le_right
compl_mem_sets_of_nhdsWithin πŸ“–β€”IsCompact
Set
Filter
Filter.instMembership
nhdsWithin
Compl.compl
Set.instCompl
β€”β€”compl_mem_sets
Filter.mem_inf_principal
Filter.mem_inf_of_inter
diff πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instSDiff
β€”inter_right
isClosed_compl_iff
disjoint_nhdsSet_left πŸ“–mathematicalIsCompactDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
nhds
β€”Disjoint.mono_left
nhds_le_nhdsSet
elim_nhds_subcover
IsOpen.mem_nhds
Filter.HasBasis.disjoint_iff_left
hasBasis_nhdsSet
isOpen_biUnion
Set.compl_iUnionβ‚‚
Filter.biInter_finset_mem
nhds_basis_opens
Function.sometimes_spec
disjoint_nhdsSet_right πŸ“–mathematicalIsCompactDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
nhds
β€”disjoint_nhdsSet_left
elim_directed_cover πŸ“–β€”IsCompact
IsOpen
Set
Set.instHasSubset
Set.iUnion
Directed
β€”β€”induction_on
Set.empty_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.union_subset
Set.Subset.trans
Set.mem_iUnion
mem_nhdsWithin_of_mem_nhds
IsOpen.mem_nhds
Set.Subset.refl
elim_directed_family_closed πŸ“–β€”IsCompact
IsClosed
Set
Set.instInter
Set.iInter
Set.instEmptyCollection
Directed
Set.instHasSubset
β€”β€”elim_directed_cover
IsClosed.isOpen_compl
Directed.mono_comp
Set.compl_subset_compl
elim_finite_subcover πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instHasSubset
Set.iUnion
Finset
Finset.instMembership
β€”elim_directed_cover
isOpen_biUnion
Set.iUnion_eq_iUnion_finset
directed_of_isDirected_le
Finset.isDirected_le
Set.biUnion_subset_biUnion_left
elim_finite_subcover_image πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
Set.Finiteβ€”elim_finite_subcover
Set.biUnion_eq_iUnion
Subtype.coe_preimage_self
Set.Finite.image
Finset.finite_toSet
Set.biUnion_image
elim_finite_subfamily_closed πŸ“–mathematicalIsCompact
IsClosed
Set
Set.instInter
Set.iInter
Set.instEmptyCollection
Finset
Finset.instMembership
β€”elim_directed_family_closed
isClosed_biInter
Set.iInter_eq_iInter_finset
directed_of_isDirected_le
Finset.isDirected_le
Set.biInter_subset_biInter_left
elim_finite_subfamily_isClosed_subtype πŸ“–mathematicalIsCompact
IsClosed
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
Set.instInter
Set.iInter
Set.instEmptyCollection
Finset
Finset.instMembership
β€”Set.iInter_coe_set
Set.iInter_congr_Prop
Set.univ_inter
elim_finite_subfamily_closed
isCompact_iff_isCompact_univ
Subtype.prop
elim_nhdsWithin_subcover πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhdsWithin
Set.instMembership
Set.instHasSubset
Set.iUnion
Finset
Finset.instMembership
β€”subset_trans
Set.instIsTransSubset
Set.instReflSubset
Set.iUnionβ‚‚_mono
elim_nhds_subcover
mem_nhdsWithin_iff_exists_mem_nhds_inter
Function.sometimes_spec
elim_nhdsWithin_subcover' πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhdsWithin
Set.instHasSubset
Set.iUnion
Set.Elem
Finset
Finset.instMembership
Set.instMembership
β€”subset_trans
Set.instIsTransSubset
Set.instReflSubset
Set.iUnionβ‚‚_mono
elim_nhds_subcover'
mem_nhdsWithin_iff_exists_mem_nhds_inter
elim_nhds_subcover πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhds
Set.instMembership
Set.instHasSubset
Set.iUnion
Finset
Finset.instMembership
β€”subset_of_mem_nhdsSet
elim_nhds_subcover_nhdsSet
elim_nhds_subcover' πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhds
Set.instHasSubset
Set.iUnion
Set.Elem
Finset
Finset.instMembership
Set.instMembership
β€”subset_of_mem_nhdsSet
elim_nhds_subcover_nhdsSet'
elim_nhds_subcover_nhdsSet πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhds
Set.instMembership
nhdsSet
Set.iUnion
Finset
Finset.instMembership
β€”elim_nhds_subcover_nhdsSet'
Finset.mem_image
Finset.set_biUnion_finset_image
elim_nhds_subcover_nhdsSet' πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhds
nhdsSet
Set.iUnion
Set.Elem
Finset
Finset.instMembership
Set.instMembership
β€”elim_finite_subcover
isOpen_interior
Set.mem_iUnion
mem_interior_iff_mem_nhds
mem_nhdsSet_iff_forall
Set.mem_iUnionβ‚‚
Filter.mem_of_superset
Set.subset_biUnion_of_mem
eventually_forall_of_forall_eventually πŸ“–β€”IsCompact
Filter.Eventually
nhds
instTopologicalSpaceProd
β€”β€”Filter.Eventually.mono
Filter.Eventually.curry
nhds_prod_eq
prod_nhdsSet_eq_biSup
Filter.Eventually.self_of_nhdsSet
exists_clusterPt πŸ“–mathematicalIsCompact
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.principal
Set
Set.instMembership
ClusterPt
β€”β€”
exists_clusterPt_of_frequently πŸ“–mathematicalIsCompact
Filter.Frequently
Set
Set.instMembership
ClusterPtβ€”Filter.frequently_mem_iff_neBot
inf_le_right
ClusterPt.mono
inf_le_left
exists_mapClusterPt πŸ“–mathematicalIsCompact
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.map
Filter.principal
Set
Set.instMembership
MapClusterPt
β€”Filter.map_neBot
exists_mapClusterPt_of_frequently πŸ“–mathematicalIsCompact
Filter.Frequently
Set
Set.instMembership
MapClusterPtβ€”exists_clusterPt_of_frequently
finite πŸ“–mathematicalIsCompact
IsDiscrete
Set.Finiteβ€”Set.finite_coe_iff
finite_of_compact_of_discrete
isCompact_iff_compactSpace
IsDiscrete.to_subtype
finite_of_discrete πŸ“–mathematicalIsCompactSet.Finiteβ€”nhds_discrete
elim_nhds_subcover
Set.Finite.subset
Finset.finite_toSet
Finset.set_biUnion_coe
Set.biUnion_of_singleton
image πŸ“–mathematicalIsCompact
Continuous
Set.imageβ€”image_of_continuousOn
Continuous.continuousOn
image_of_continuousOn πŸ“–mathematicalIsCompact
ContinuousOn
Set.imageβ€”Filter.comap_inf_principal_neBot_of_image_mem
Filter.le_principal_iff
inf_le_right
Set.mem_image_of_mem
nhdsWithin.eq_1
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
Filter.Tendsto.inf
Filter.tendsto_comap
Filter.Tendsto.neBot
ClusterPt.neBot
induction_on πŸ“–β€”IsCompact
Set
Set.instEmptyCollection
Set.instUnion
Filter
Filter.instMembership
nhdsWithin
β€”β€”compl_mem_sets_of_nhdsWithin
compl_compl
inf_nhdsSet_eq_biSup πŸ“–mathematicalIsCompactFilter
Filter.instInf
nhdsSet
iSup
Filter.instSupSet
Set
Set.instMembership
nhds
β€”inf_comm
nhdsSet_inf_eq_biSup
iSup_congr_Prop
insert πŸ“–mathematicalIsCompactSet
Set.instInsert
β€”union
isCompact_singleton
inter_iInter_nonempty πŸ“–β€”IsCompact
IsClosed
Set.Nonempty
Set
Set.instInter
Set.iInter
Finset
Finset.instMembership
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
elim_finite_subfamily_closed
inter_left πŸ“–mathematicalIsCompactSet
Set.instInter
β€”inter_right
Set.inter_comm
inter_right πŸ“–mathematicalIsCompactSet
Set.instInter
β€”le_trans
Filter.le_principal_iff
Set.inter_subset_left
IsClosed.mem_of_nhdsWithin_neBot
ClusterPt.mono
Set.inter_subset_right
le_nhds_of_unique_clusterPt πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
β€”Filter.le_iff_ultrafilter
ultrafilter_le_nhds'
ClusterPt.mono
ClusterPt.of_le_nhds
Ultrafilter.neBot
mem_inf_nhdsSet_of_forall πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
Filter.instInf
nhds
nhdsSetβ€”inf_nhdsSet_eq_biSup
mem_nhdsSet_inf_of_forall πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
Filter.instInf
nhds
nhdsSetβ€”nhdsSet_inf_eq_biSup
mem_nhdsSet_prod_of_forall πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
SProd.sprod
Filter.instSProd
nhds
nhdsSetβ€”induction_on
nhdsSet_empty
Filter.bot_prod
Filter.prod_mono
nhdsSet_mono
le_rfl
nhdsSet_union
Filter.sup_prod
Filter.HasBasis.mem_iff
Filter.HasBasis.prod
nhds_basis_opens
Filter.basis_sets
nhdsWithin_le_nhds
IsOpen.mem_nhds
Filter.mem_of_superset
Filter.prod_mem_prod
IsOpen.mem_nhdsSet
Set.Subset.rfl
mem_prod_nhdsSet_of_forall πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
SProd.sprod
Filter.instSProd
nhds
nhdsSetβ€”prod_nhdsSet_eq_biSup
ne_univ πŸ“–β€”IsCompactβ€”β€”noncompact_univ
nhdsSetWithin_prod_eq πŸ“–mathematicalIsCompactnhdsSetWithin
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
Filter
Filter.instSProd
β€”nhdsSet_prod_eq
Filter.prod_principal_principal
nhdsSet_inf_eq_biSup πŸ“–mathematicalIsCompactFilter
Filter.instInf
nhdsSet
iSup
Filter.instSupSet
Set
Set.instMembership
nhds
β€”Filter.comap_prod
Filter.comap_id
iSup_congr_Prop
nhdsSet_prod_eq_biSup
nhdsSet_prod_eq πŸ“–mathematicalIsCompactnhdsSet
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
Filter
Filter.instSProd
β€”nhdsSet_prod_eq_biSup
iSup_congr_Prop
prod_nhdsSet_eq_biSup
sSup_image
biSup_prod
nhds_prod_eq
nhdsSet_prod_eq_biSup πŸ“–mathematicalIsCompactSProd.sprod
Filter
Filter.instSProd
nhdsSet
iSup
Filter.instSupSet
Set
Set.instMembership
nhds
β€”le_antisymm
mem_nhdsSet_prod_of_forall
iSupβ‚‚_le
Filter.prod_mono
nhds_le_nhdsSet
le_rfl
nonempty_iInter_of_directed_nonempty_isCompact_isClosed πŸ“–mathematicalDirected
Set
Set.instHasSubset
Set.Nonempty
IsCompact
IsClosed
Set.iInterβ€”elim_directed_family_closed
Set.Nonempty.mono
Set.subset_inter
Set.inter_eq_right
Set.iInter_subset
nonempty_iInter_of_sequence_nonempty_isCompact_isClosed πŸ“–mathematicalSet
Set.instHasSubset
Set.Nonempty
IsCompact
IsClosed
Set.iInterβ€”antitone_nat_of_succ_le
Antitone.directed_ge
SemilatticeSup.instIsDirectedOrder
of_isClosed_subset
nonempty_iInter_of_directed_nonempty_isCompact_isClosed
nonempty_sInter_of_directed_nonempty_isCompact_isClosed πŸ“–mathematicalDirectedOn
Set
Set.instHasSubset
Set.Nonempty
IsCompact
IsClosed
Set.sInterβ€”Set.sInter_eq_iInter
nonempty_iInter_of_directed_nonempty_isCompact_isClosed
DirectedOn.directed_val
of_isClosed_subset πŸ“–β€”IsCompact
Set
Set.instHasSubset
β€”β€”inter_right
Set.inter_eq_self_of_subset_right
prod πŸ“–mathematicalIsCompactinstTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
β€”isCompact_iff_ultrafilter_le_nhds'
Filter.mem_map
Filter.mem_of_superset
nhds_prod_eq
le_inf
Filter.map_le_iff_le_comap
prod_nhdsSet_eq_biSup πŸ“–mathematicalIsCompactSProd.sprod
Filter
Filter.instSProd
nhdsSet
iSup
Filter.instSupSet
Set
Set.instMembership
nhds
β€”Filter.prod_comm
nhdsSet_prod_eq_biSup
Filter.map_iSup
iSup_congr_Prop
sigma_exists_finite_sigma_eq πŸ“–mathematicalIsCompact
instTopologicalSpaceSigma
Set.Finite
Set.sigma
β€”elim_finite_subcover
isOpenMap_sigmaMk
IsOpen.preimage
continuous_sigmaMk
isOpen_univ
Set.image_univ
Set.range_sigmaMk
Finset.finite_toSet
Topology.IsClosedEmbedding.isCompact_preimage
Topology.IsClosedEmbedding.sigmaMk
Set.ext
Set.mem_iUnion
Set.iUnion_congr_Prop
Sigma.eta
tendsto_nhds_of_unique_mapClusterPt πŸ“–mathematicalIsCompact
Filter.Eventually
Set
Set.instMembership
Filter.Tendsto
nhds
β€”le_nhds_of_unique_clusterPt
Filter.mem_map
ultrafilter_le_nhds πŸ“–mathematicalIsCompact
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
Filter.principal
Set
Set.instMembership
nhds
β€”isCompact_iff_ultrafilter_le_nhds
ultrafilter_le_nhds' πŸ“–mathematicalIsCompact
Set
Ultrafilter
Ultrafilter.instMembershipSet
Set.instMembership
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
nhds
β€”isCompact_iff_ultrafilter_le_nhds'
union πŸ“–mathematicalIsCompactSet
Set.instUnion
β€”Set.union_eq_iUnion
isCompact_iUnion
Bool.instFinite

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalCompactSpacetopologicalSpaceβ€”Set.pi_univ
isCompact_univ_pi
isCompact_univ
exists_compact_superset_iff πŸ“–mathematicalβ€”IsCompact
topologicalSpace
Set
Set.instHasSubset
Set.preimage
Function.eval
β€”IsCompact.image
continuous_apply
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_preimage_image
isCompact_univ_pi
isCompact_iff_of_isClosed πŸ“–mathematicalβ€”IsCompact
topologicalSpace
Set.image
Function.eval
β€”IsCompact.image
continuous_apply
IsCompact.of_isClosed_subset
isCompact_univ_pi
Set.subset_pi_eval_image

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
noncompactSpace_iff πŸ“–mathematicalβ€”NoncompactSpace
instTopologicalSpaceProd
β€”β€”
noncompactSpace_left πŸ“–mathematicalβ€”NoncompactSpace
instTopologicalSpaceProd
β€”noncompactSpace_iff
noncompactSpace_right πŸ“–mathematicalβ€”NoncompactSpace
instTopologicalSpaceProd
β€”noncompactSpace_iff

Quot

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalβ€”CompactSpace
instTopologicalSpaceQuot
β€”isCompact_range

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalβ€”CompactSpace
instTopologicalSpaceQuotient
β€”Quot.compactSpace

Set

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_sigma πŸ“–mathematicalIsCompactinstTopologicalSpaceSigma
sigma
β€”sigma_eq_biUnion
Finite.isCompact_biUnion
IsCompact.image
continuous_sigmaMk
sUnion_isCompact_eq_univ πŸ“–mathematicalβ€”sUnion
setOf
Set
IsCompact
univ
β€”eq_univ_of_forall

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact πŸ“–mathematicalβ€”IsCompactβ€”isCompact_biUnion
isCompact_singleton
Set.biUnion_of_singleton
isCompact_biUnion πŸ“–mathematicalIsCompactSet.iUnion
Set
Set.instMembership
β€”isCompact_iff_ultrafilter_le_nhds'
Ultrafilter.finite_biUnion_mem_iff
IsCompact.ultrafilter_le_nhds
Filter.le_principal_iff
Set.mem_iUnionβ‚‚
isCompact_sUnion πŸ“–mathematicalIsCompactSet.sUnionβ€”Set.sUnion_eq_biUnion
isCompact_biUnion

Set.Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
exists_accPt_cofinite_inf_principal πŸ“–mathematicalSet.InfiniteAccPt
Filter
Filter.instInf
Filter.cofinite
Filter.principal
β€”exists_accPt_cofinite_inf_principal_of_subset_isCompact
isCompact_univ
Set.subset_univ
exists_accPt_cofinite_inf_principal_of_subset_isCompact πŸ“–mathematicalSet.Infinite
IsCompact
Set
Set.instHasSubset
Set.instMembership
AccPt
Filter
Filter.instInf
Filter.cofinite
Filter.principal
β€”accPt_iff_clusterPt
inf_comm
inf_right_comm
Set.Finite.cofinite_inf_principal_compl
Set.finite_singleton
cofinite_inf_principal_neBot
LE.le.trans
inf_le_right
Filter.principal_mono
exists_accPt_of_subset_isCompact πŸ“–mathematicalSet.Infinite
IsCompact
Set
Set.instHasSubset
Set.instMembership
AccPt
Filter.principal
β€”exists_accPt_cofinite_inf_principal_of_subset_isCompact
AccPt.mono
inf_le_right
exists_accPt_principal πŸ“–mathematicalSet.InfiniteAccPt
Filter.principal
β€”AccPt.mono
inf_le_right
exists_accPt_cofinite_inf_principal

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact πŸ“–mathematicalSet.SubsingletonIsCompactβ€”induction_on
isCompact_empty
isCompact_singleton

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalβ€”CompactSpaceβ€”Set.Subsingleton.isCompact
Set.subsingleton_univ

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_iff πŸ“–mathematicalβ€”IsCompact
instTopologicalSpaceSubtype
Set.image
β€”Topology.IsEmbedding.isCompact_iff
Topology.IsEmbedding.subtypeVal

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalTopology.IsClosedEmbeddingCompactSpaceβ€”Topology.IsInducing.isCompact_iff
isInducing
Set.image_univ
IsClosed.isCompact
isClosed_range
isCompact_preimage πŸ“–mathematicalTopology.IsClosedEmbedding
IsCompact
Set.preimageβ€”Topology.IsInducing.isCompact_preimage
isInducing
isClosed_range
noncompactSpace πŸ“–mathematicalTopology.IsClosedEmbeddingNoncompactSpaceβ€”noncompactSpace_of_neBot
Filter.Tendsto.neBot
tendsto_cocompact
instNeBotCocompactOfNoncompactSpace
tendsto_cocompact πŸ“–mathematicalTopology.IsClosedEmbeddingFilter.Tendsto
Filter.cocompact
β€”Filter.HasBasis.tendsto_right_iff
Filter.hasBasis_cocompact
IsCompact.compl_mem_cocompact
isCompact_preimage

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_iff πŸ“–mathematicalTopology.IsEmbeddingIsCompact
Set.image
β€”Topology.IsInducing.isCompact_iff
isInducing

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_iff πŸ“–mathematicalTopology.IsInducingIsCompact
Set.image
β€”IsCompact.image
continuous
Filter.map_neBot
LE.le.trans_eq
Filter.map_mono
Filter.map_principal
mapClusterPt_iff
isCompact_preimage πŸ“–mathematicalTopology.IsInducing
IsCompact
Set.preimageβ€”IsCompact.inter_right
isCompact_iff
Set.image_preimage_eq_inter_range
isCompact_preimage' πŸ“–mathematicalTopology.IsInducing
IsCompact
Set
Set.instHasSubset
Set.range
Set.preimageβ€”isCompact_preimage_iff
isCompact_preimage_iff πŸ“–mathematicalTopology.IsInducing
Set
Set.instHasSubset
Set.range
IsCompact
Set.preimage
β€”isCompact_iff
Set.image_preimage_eq_of_subset

ULift

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalβ€”CompactSpace
topologicalSpace
β€”Topology.IsClosedEmbedding.compactSpace
Topology.IsClosedEmbedding.uliftDown

Ultrafilter

Theorems

NameKindAssumesProvesValidatesDepends On
le_nhds_lim πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
toFilter
nhds
lim
β€”IsCompact.ultrafilter_le_nhds
isCompact_univ
Filter.principal_univ
le_nhds_lim

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_generateFrom πŸ“–mathematicalTopologicalSpace.generateFrom
Set
Set.instHasSubset
Set.Finite
Set.sUnion
Set.univ
CompactSpaceβ€”isCompact_univ_iff
isCompact_generateFrom
compactSpace_generateFrom' πŸ“–mathematicalTopologicalSpace.generateFrom
Set.Finite
Set.iUnion
Set
Set.instMembership
Set.univ
CompactSpaceβ€”isCompact_univ_iff
isCompact_generateFrom'
compactSpace_of_finite_subfamily_closed πŸ“–mathematicalSet.iInter
Finset
Finset.instMembership
Set
Set.instEmptyCollection
CompactSpaceβ€”isCompact_of_finite_subfamily_closed
Set.univ_inter
disjoint_map_cocompact πŸ“–mathematicalContinuous
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.cocompact
Filter.mapβ€”Filter.disjoint_comap_iff_map
disjoint_iff_inf_le
inf_le_inf_left
Filter.comap_cocompact_le
disjoint_iff
exists_clusterPt_of_compactSpace πŸ“–mathematicalβ€”ClusterPtβ€”isCompact_univ
Filter.principal_univ
exists_nhds_ne_inf_principal_neBot πŸ“–mathematicalIsCompact
Set.Infinite
Set
Set.instMembership
Filter.NeBot
Filter
Filter.instInf
nhdsWithin
Compl.compl
Set.instCompl
Set.instSingletonSet
Filter.principal
β€”Set.Infinite.exists_accPt_of_subset_isCompact
Set.Subset.rfl
exists_nhds_ne_neBot πŸ“–mathematicalβ€”Filter.NeBot
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”Filter.principal_univ
inf_of_le_left
Set.Infinite.exists_accPt_principal
Set.infinite_univ
exists_subset_nhds_of_compactSpace πŸ“–β€”Directed
Set
Set.instHasSubset
IsClosed
Filter
Filter.instMembership
nhds
β€”β€”exists_subset_nhds_of_isCompact'
IsClosed.isCompact
exists_subset_nhds_of_isCompact' πŸ“–β€”Directed
Set
Set.instHasSubset
IsCompact
IsClosed
Filter
Filter.instMembership
nhds
β€”β€”exists_open_set_nhds
Set.inter_compl_nonempty_iff
IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
IsCompact.inter_right
IsOpen.isClosed_compl
IsClosed.inter
HasSubset.Subset.trans
Set.instIsTransSubset
finite_cover_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.iUnion
Finset
Finset.instMembership
Set.univ
β€”finite_cover_nhds_interior
Set.univ_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Eq.subset
Set.instReflSubset
Set.iUnionβ‚‚_mono
interior_subset
finite_cover_nhds_interior πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.iUnion
Finset
Finset.instMembership
interior
Set.univ
β€”IsCompact.elim_finite_subcover
isCompact_univ
isOpen_interior
Set.mem_iUnion
mem_interior_iff_mem_nhds
Set.univ_subset_iff
finite_of_compact_of_discrete πŸ“–mathematicalβ€”Finiteβ€”Finite.of_finite_univ
IsCompact.finite_of_discrete
isCompact_univ
generalized_tube_lemma πŸ“–β€”IsCompact
IsOpen
instTopologicalSpaceProd
Set
Set.instHasSubset
SProd.sprod
Set.instSProd
β€”β€”Filter.HasBasis.mem_iff
Filter.HasBasis.prod
hasBasis_nhdsSet
IsCompact.nhdsSet_prod_eq
IsOpen.mem_nhdsSet
generalized_tube_lemma' πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhdsSetWithin
instTopologicalSpaceProd
SProd.sprod
Set.instSProd
Set.instHasSubsetβ€”Filter.mem_prod_iff
IsCompact.nhdsSetWithin_prod_eq
generalized_tube_lemma_left πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhdsSetWithin
instTopologicalSpaceProd
SProd.sprod
Set.instSProd
Set.instHasSubsetβ€”Filter.mem_prod_principal
nhdsSetWithin_self
IsCompact.nhdsSetWithin_prod_eq
generalized_tube_lemma_right πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhdsSetWithin
instTopologicalSpaceProd
SProd.sprod
Set.instSProd
Set.instHasSubsetβ€”Filter.mem_prod_iff
nhdsSetWithin_self
IsCompact.nhdsSetWithin_prod_eq
HasSubset.Subset.trans
Set.instIsTransSubset
Set.prod_mono_left
instCompactSpaceProd πŸ“–mathematicalβ€”CompactSpace
instTopologicalSpaceProd
β€”Set.univ_prod_univ
IsCompact.prod
isCompact_univ
instCompactSpaceSigmaOfFinite πŸ“–mathematicalCompactSpaceinstTopologicalSpaceSigmaβ€”Set.Sigma.univ
isCompact_iUnion
isCompact_range
continuous_sigmaMk
instCompactSpaceSum πŸ“–mathematicalβ€”CompactSpace
instTopologicalSpaceSum
β€”Set.range_inl_union_range_inr
IsCompact.union
isCompact_range
continuous_inl
continuous_inr
instNeBotCoclosedCompactOfNoncompactSpace πŸ“–mathematicalβ€”Filter.NeBot
Filter.coclosedCompact
β€”Filter.neBot_of_le
instNeBotCocompactOfNoncompactSpace
Filter.cocompact_le_coclosedCompact
instNeBotCocompactOfNoncompactSpace πŸ“–mathematicalβ€”Filter.NeBot
Filter.cocompact
β€”Filter.HasBasis.neBot_iff
Filter.hasBasis_cocompact
Mathlib.Tactic.Contrapose.contrapose₁
Set.compl_empty_iff
Set.not_nonempty_iff_eq_empty
noncompact_univ
instNoncompactSpaceInt πŸ“–mathematicalβ€”NoncompactSpace
instTopologicalSpaceInt
β€”noncompactSpace_of_neBot
Filter.cocompact_eq_cofinite
instDiscreteTopologyInt
Int.infinite
isCompact_accumulate πŸ“–mathematicalIsCompactSet.accumulateβ€”Set.Finite.isCompact_biUnion
Set.finite_le_nat
isCompact_diagonal πŸ“–mathematicalβ€”IsCompact
instTopologicalSpaceProd
Set.diagonal
β€”isCompact_range
Continuous.prodMk
continuous_id
Set.range_diag
isCompact_empty πŸ“–mathematicalβ€”IsCompact
Set
Set.instEmptyCollection
β€”Filter.NeBot.ne
Filter.empty_mem_iff_bot
Filter.le_principal_iff
isCompact_generateFrom πŸ“–mathematicalTopologicalSpace.generateFrom
Set
Set.instHasSubset
Set.Finite
Set.sUnion
IsCompactβ€”isCompact_iff_ultrafilter_le_nhds'
TopologicalSpace.nhds_generateFrom
Set.mem_sUnion_of_mem
Set.sInter_image
Filter.biInter_mem
Ultrafilter.compl_mem_iff_notMem
Filter.mem_of_superset
Function.sometimes_spec
isCompact_generateFrom' πŸ“–mathematicalTopologicalSpace.generateFrom
Set.Finite
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
IsCompactβ€”isCompact_generateFrom
Set.sUnion_eq_iUnion
Subtype.coe_preimage_self
Set.Finite.image
Set.sUnion_image
Set.iUnion_coe_set
Set.iUnion_congr_Prop
isCompact_iUnion πŸ“–mathematicalIsCompactSet.iUnionβ€”Set.Finite.isCompact_sUnion
Set.finite_range
Set.forall_mem_range
isCompact_iff_compactSpace πŸ“–mathematicalβ€”IsCompact
CompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”isCompact_iff_isCompact_univ
isCompact_univ_iff
isCompact_iff_finite πŸ“–mathematicalβ€”IsCompact
Set.Finite
β€”IsCompact.finite_of_discrete
Set.Finite.isCompact
isCompact_iff_finite_subcover πŸ“–mathematicalβ€”IsCompact
Set
Set.instHasSubset
Set.iUnion
Finset
Finset.instMembership
β€”IsCompact.elim_finite_subcover
isCompact_of_finite_subcover
isCompact_iff_finite_subfamily_closed πŸ“–mathematicalβ€”IsCompact
Set
Set.instInter
Set.iInter
Finset
Finset.instMembership
Set.instEmptyCollection
β€”IsCompact.elim_finite_subfamily_closed
isCompact_of_finite_subfamily_closed
isCompact_iff_isCompact_univ πŸ“–mathematicalβ€”IsCompact
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.univ
β€”Subtype.isCompact_iff
Set.image_univ
Subtype.range_coe
isCompact_iff_ultrafilter_le_nhds πŸ“–mathematicalβ€”IsCompact
Set
Set.instMembership
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
nhds
β€”Filter.forall_neBot_le_iff
ClusterPt.mono
isCompact_iff_ultrafilter_le_nhds' πŸ“–mathematicalβ€”IsCompact
Set
Set.instMembership
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
nhds
β€”β€”
isCompact_of_finite_subcover πŸ“–mathematicalSet
Set.instHasSubset
Set.iUnion
Finset
Finset.instMembership
IsCompactβ€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
Set.mem_iUnion
Filter.compl_notMem
Filter.le_principal_iff
Filter.mem_of_superset
Filter.biInter_finset_mem
Set.subset_compl_comm
Set.compl_iInterβ‚‚
Set.iUnion_congr_Prop
compl_compl
Filter.HasBasis.disjoint_iff_left
nhds_basis_opens
isCompact_of_finite_subfamily_closed πŸ“–mathematicalSet
Set.instInter
Set.iInter
Finset
Finset.instMembership
Set.instEmptyCollection
IsCompactβ€”isCompact_of_finite_subcover
IsOpen.isClosed_compl
disjoint_iff
Set.compl_iUnion
Set.disjoint_compl_right_iff_subset
Set.compl_iUnionβ‚‚
isCompact_pi_infinite πŸ“–mathematicalIsCompactPi.topologicalSpace
setOf
β€”nhds_pi
Filter.mem_map
Filter.mem_of_superset
isCompact_range πŸ“–mathematicalContinuousIsCompact
Set.range
β€”Set.image_univ
IsCompact.image
isCompact_univ
isCompact_singleton πŸ“–mathematicalβ€”IsCompact
Set
Set.instSingletonSet
β€”ClusterPt.of_le_nhds'
LE.le.trans
Filter.principal_singleton
pure_le_nhds
isCompact_univ πŸ“–mathematicalβ€”IsCompact
Set.univ
β€”CompactSpace.isCompact_univ
isCompact_univ_iff πŸ“–mathematicalβ€”IsCompact
Set.univ
CompactSpace
β€”CompactSpace.isCompact_univ
isCompact_univ_pi πŸ“–mathematicalIsCompactPi.topologicalSpace
Set.pi
Set.univ
β€”isCompact_pi_infinite
le_nhds_of_unique_clusterPt πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
β€”IsCompact.le_nhds_of_unique_clusterPt
isCompact_univ
Filter.univ_mem
nhdsSet_prod_le_of_disjoint_cocompact πŸ“–mathematicalIsCompact
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.cocompact
SProd.sprod
Filter.instSProd
nhdsSet
instTopologicalSpaceProd
Set
Set.instSProd
Set.univ
β€”Filter.disjoint_cocompact_right
Filter.prod_mono_right
Filter.le_principal_iff
principal_le_nhdsSet
IsCompact.nhdsSet_prod_eq
nhdsSet_mono
Set.prod_mono_right
le_top
nhds_prod_le_of_disjoint_cocompact πŸ“–mathematicalDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.cocompact
SProd.sprod
Filter.instSProd
nhds
nhdsSet
instTopologicalSpaceProd
Set
Set.instSProd
Set.instSingletonSet
Set.univ
β€”nhdsSet_singleton
nhdsSet_prod_le_of_disjoint_cocompact
isCompact_singleton
noncompactSpace_of_neBot πŸ“–mathematicalβ€”NoncompactSpaceβ€”Set.Nonempty.ne_empty
Filter.nonempty_of_mem
IsCompact.compl_mem_cocompact
Set.compl_univ
noncompact_univ πŸ“–mathematicalβ€”IsCompact
Set.univ
β€”NoncompactSpace.noncompact_univ
not_compactSpace_iff πŸ“–mathematicalβ€”CompactSpace
NoncompactSpace
β€”β€”
prod_nhdsSet_le_of_disjoint_cocompact πŸ“–mathematicalIsCompact
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.cocompact
SProd.sprod
Filter.instSProd
nhdsSet
instTopologicalSpaceProd
Set
Set.instSProd
Set.univ
β€”Filter.disjoint_cocompact_right
Filter.prod_mono_left
Filter.le_principal_iff
principal_le_nhdsSet
IsCompact.nhdsSet_prod_eq
nhdsSet_mono
Set.prod_mono_left
le_top
prod_nhds_le_of_disjoint_cocompact πŸ“–mathematicalDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.cocompact
SProd.sprod
Filter.instSProd
nhds
nhdsSet
instTopologicalSpaceProd
Set
Set.instSProd
Set.univ
Set.instSingletonSet
β€”nhdsSet_singleton
prod_nhdsSet_le_of_disjoint_cocompact
isCompact_singleton
tendsto_nhds_of_unique_mapClusterPt πŸ“–mathematicalβ€”Filter.Tendsto
nhds
β€”le_nhds_of_unique_clusterPt

---

← Back to Index